Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = tail wing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7193 KiB  
Article
Optimization of Trailing-Edge Unloading for Lambda-Wing UAV Using B-Spline Trailing-Edge Twist Method
by Chengen Yuan, Dongli Ma, Yuhong Jia and Liang Zhang
Drones 2025, 9(7), 462; https://doi.org/10.3390/drones9070462 - 28 Jun 2025
Viewed by 292
Abstract
As a commonly used configuration for advanced unmanned aerial vehicles (UAVs), the flying-wing configuration suffers from pitching moment trimming issues due to the lack of horizontal tail. The UAV either needs to unload lift at the trailing edge or needs to increase the [...] Read more.
As a commonly used configuration for advanced unmanned aerial vehicles (UAVs), the flying-wing configuration suffers from pitching moment trimming issues due to the lack of horizontal tail. The UAV either needs to unload lift at the trailing edge or needs to increase the wingtip twist angle at the cost of losing the lift-to-drag ratio. The commonly used methods for solving pitching moment trimming issues are compared and analyzed in this paper, and it is found that the method of trailing-edge twist has advantages under cruising lift coefficient. Furthermore, a trailing-edge twist deformation parameterized model that can deform multiple critical sections is designed with relevant grids. The multi-objective genetic algorithm is used to optimize the parameterized model and obtain the optimized results. Through comparative analysis, it is found that the optimized trailing-edge twist model has an advantage in distributing the pitching moment. By optimizing the distribution of aerodynamic forces and moments, cruise trim is achieved with only a 1.43% cost to the cruise lift-to-drag ratio compared to the initial model. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

16 pages, 3539 KiB  
Article
Aerodynamics Caused by Rolling Rates of a Small-Scale Supersonic Flight Experiment Vehicle with a Cranked-Arrow Main Wing
by Kazuhide Mizobata, Koji Shirakata, Atsuya Honda, Keisuke Shiono, Yukiya Ishigami, Akihiro Nishida and Masaaki Miura
Aerospace 2025, 12(7), 572; https://doi.org/10.3390/aerospace12070572 - 24 Jun 2025
Viewed by 296
Abstract
A small-scale supersonic flight experiment vehicle is being developed at Muroran Institute of Technology as a flying testbed for verification of innovative technologies for high-speed atmospheric flights, which are essential to next-generation aerospace transportation systems. Its baseline configuration M2011 with a cranked-arrow main [...] Read more.
A small-scale supersonic flight experiment vehicle is being developed at Muroran Institute of Technology as a flying testbed for verification of innovative technologies for high-speed atmospheric flights, which are essential to next-generation aerospace transportation systems. Its baseline configuration M2011 with a cranked-arrow main wing with an inboard and outboard leading edge sweepback angle of 66 and 61 degrees and horizontal and vertical tails has been proposed. Its aerodynamics caused by attitude motion are required to be clarified for six-degree-of-freedom flight capability prediction and autonomous guidance and control. This study concentrates on characterization of such aerodynamics caused by rolling rates in the subsonic regime. A mechanism for rolling a wind-tunnel test model at various rolling rates and arbitrary pitch angle is designed and fabricated using a programmable stepping motor and an equatorial mount. A series of subsonic wind-tunnel tests and preliminary CFD analysis are carried out. The resultant static derivatives have sufficiently small scatter and agree quite well with the static wind-tunnel tests in the case of a small pitch angle, whereas the static directional stability deteriorates in the case of large pitch angles and large nose lengths. In addition, the resultant dynamic derivatives agree well with the CFD analysis and the conventional theory in the case of zero pitch angle, whereas the roll damping deteriorates in the case of large pitch angles and proverse yaw takes place in the case of a large nose length. Full article
(This article belongs to the Special Issue Research and Development of Supersonic Aircraft)
Show Figures

Figure 1

35 pages, 6410 KiB  
Article
Conceptual Design of a Low-Cost Class-III Turbofan-Based UCAV Loyal Wingman
by Savvas Roussos, Eleftherios Karatzas, Vassilios Kostopoulos and Vaios Lappas
Aerospace 2025, 12(6), 556; https://doi.org/10.3390/aerospace12060556 - 18 Jun 2025
Viewed by 747
Abstract
The rapid evolution of military technology has led to an increased interest in Unmanned Combat Aerial Vehicles (UCAVs). This research focuses on the conceptual design of a low-cost, turbofan-powered UCAV, specifically a Class-III aircraft as defined by NATO classification (STANAG 4670), with a [...] Read more.
The rapid evolution of military technology has led to an increased interest in Unmanned Combat Aerial Vehicles (UCAVs). This research focuses on the conceptual design of a low-cost, turbofan-powered UCAV, specifically a Class-III aircraft as defined by NATO classification (STANAG 4670), with a target take-off weight of approximately one tonne. The study adopts a “from scratch” design approach, recognizing the limitations of existing data and the potential for scaling errors. This approach involves a meticulous design process that includes the development of precise requirements, weight estimations, and iterative optimization of the aircraft layout to ensure aerodynamic efficiency and operational functionality. A key element of this conceptual design is its focus on a low-cost profile, achieved through the adoption of a simplified structural layout, and the integration of off-the-shelf components where possible. The design process involves an iterative approach, beginning with fundamental requirements and progressing through the detailed development of individual components and their integration into a cohesive aircraft. The study details the selection of an existing and operational engine due to its power output. The design and analysis of the wing, fuselage, and V-tail configuration are presented, incorporating considerations for aerodynamic efficiency, stability, weight estimation, and internal component layout. The study concludes by outlining recommendations for future work, including high-fidelity CFD simulations, structural analysis, and the integration of advanced electronic systems and AI capabilities essential for the Loyal Wingman concept. Full article
(This article belongs to the Special Issue UAV System Modelling Design and Simulation)
Show Figures

Figure 1

22 pages, 6442 KiB  
Article
An Efficient SDOF Sweep Wing Morphing Technology for eVTOL-UAV and Experimental Realization
by Palaniswamy Shanmugam, Parammasivam Kanjikovil Mahali and Samikkannu Raja
Drones 2025, 9(6), 435; https://doi.org/10.3390/drones9060435 - 14 Jun 2025
Viewed by 442
Abstract
The presented study demonstrates that UAVs can be flown with a morphing wing to develop essential aerodynamic efficiency without a tail structure, which decides the operational cost and flight safety. The mechanical control for morphing is discussed, where the system design, simulation, and [...] Read more.
The presented study demonstrates that UAVs can be flown with a morphing wing to develop essential aerodynamic efficiency without a tail structure, which decides the operational cost and flight safety. The mechanical control for morphing is discussed, where the system design, simulation, and experimental realization of ±15° SDOF sweep motion for a 7 kg eVTOL wing are detailed. The methodology, developed through a mathematical modeling of the mechanism’s kinematics and dynamics, is explained using Denavit–Hartenberg (D-H) convention, Lagrangian mechanics, and Euler–Lagrangian equations. The simulation and MBD analyses were performed in MATLAB R2021 and by Altair Motion Solve, respectively. The experiment was conducted on a dedicated test rig with two wing variants fitted with IMUs and an autopilot. The results from various methods were analyzed and experimentally compared to provide an accurate insight into the system’s design, modeling, and performance of the sweep morphing wing. The theoretical calculations by the mathematical model were compared with the test results. The sweep requirement is essential for eVTOL to have long endurance and multi-mission capabilities. Therefore, the developed sweep morphing mechanism is very useful, meeting such a demand. However, the results for three-dimensional morphing, operating sweep, pitch, and roll together are also presented, for the sake of completeness. Full article
Show Figures

Figure 1

24 pages, 1678 KiB  
Article
An Adaptation of Nonlinear Aerodynamic Models for Non-Traditional Control Effectors
by Christian R. Bolander and Douglas F. Hunsaker
Aerospace 2025, 12(5), 426; https://doi.org/10.3390/aerospace12050426 - 10 May 2025
Viewed by 394
Abstract
This paper presents the development of a novel aerodynamic model tailored for the Bio-Inspired Rotating Empennage (BIRE), a non-traditional fixed-wing aircraft empennage inspired by avian flight. The BIRE replaces the conventional vertical stabilizer with an extra degree of freedom for the horizontal stabilizer, [...] Read more.
This paper presents the development of a novel aerodynamic model tailored for the Bio-Inspired Rotating Empennage (BIRE), a non-traditional fixed-wing aircraft empennage inspired by avian flight. The BIRE replaces the conventional vertical stabilizer with an extra degree of freedom for the horizontal stabilizer, which is allowed to rotate about the body-fixed x axis. This empennage is similar to the tail of a bird, and allows control of both longitudinal and lateral moments. However, such a design introduces complex nonlinear longitudinal and lateral aerodynamic interactions, not typically accounted for in most fixed-wing aircraft aerodynamic models below stall. This work presents a nonlinear sinusoidal aerodynamic model that can be used for fixed-wing aircraft with this type of empennage. Although the aerodynamic model is constructed to accurately capture the degrees of freedom of this particular empennage design, similar methods could be used to develop other aerodynamic models for non-traditional control effectors. A large dataset of low-fidelity aerodynamic data was generated using a modern numerical lifting-line algorithm, and these data were fit to the nonlinear sinusoidal aerodynamic model. A method for fitting the data is demonstrated, and the results show that the nonlinear sinusoidal aerodynamic model can be fit to the data with an accuracy of less than 10% of the maximum deviation of the aerodynamic coefficients in root-mean-square error. The underlying physics of many of the longitudinal and lateral nonlinear sinusoidal aerodynamic properties of the aircraft are discussed in detail. The methodology presented here can be extended to other non-traditional control effectors, encouraging innovative approaches in aerodynamic modeling and aircraft design. In contrast, choosing to model control effectors using the traditional, linear approach can obscure key aerodynamic behaviors key for trim and control analyses. The study’s findings underscore the importance of developing adaptable aerodynamic models to support the advancement of next-generation aircraft designs and control systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 5034 KiB  
Article
Flight Dynamics Modeling and Verification for a Novel Compound Rotorcraft Considering Rotor/Propeller/Fuselage Aerodynamic Interference
by Xinfan Yin, Bowen Nie, Chang Wang, Honglei An, Shengde Jia, Hongxu Ma, Haoxuan Deng and Long He
Drones 2025, 9(5), 329; https://doi.org/10.3390/drones9050329 - 24 Apr 2025
Viewed by 697
Abstract
The flight controllability and safety of unmanned compound rotorcraft are closely related to their aerodynamic characteristics. During forward flight, complex aerodynamic interference effects arise among the rotor, propeller, wing, fuselage, and horizontal–vertical tail. These interactions change dramatically with variations in forward speed, which [...] Read more.
The flight controllability and safety of unmanned compound rotorcraft are closely related to their aerodynamic characteristics. During forward flight, complex aerodynamic interference effects arise among the rotor, propeller, wing, fuselage, and horizontal–vertical tail. These interactions change dramatically with variations in forward speed, which may have a substantial impact on flight performance. This paper investigates aerodynamic interference related to the rotor, propeller, and fuselage of a sample unmanned compound rotorcraft with a novel configuration. On this basis, a flight dynamics model that incorporates the identified aerodynamic interference is formulated. Firstly, an analysis of rotor/propeller/fuselage aerodynamic interference is performed using the momentum source method (MSM). Subsequently, the aerodynamic models for the wing, fuselage, and horizontal–vertical tail are updated by integrating aerodynamic interference factors, leading to the development of a nonlinear flight dynamics model for the sample unmanned compound rotorcraft. Finally, to validate the updated flight dynamics model, numerical simulation results are systematically compared against wind tunnel test results. The results reveal a significant correlation between the numerical simulation data and wind tunnel test results, which indicates that the updated flight dynamics model possesses high accuracy and reliability and can characterize the dynamic characteristics of the sample unmanned compound rotorcraft within the flight speed envelope. Full article
Show Figures

Figure 1

17 pages, 6370 KiB  
Article
Derivation of the Controllable Region for Attitude Control of Towfish and Verification Through Water Tank Test
by Jihyeong Lee and Min-Kyu Kim
J. Mar. Sci. Eng. 2025, 13(5), 834; https://doi.org/10.3390/jmse13050834 - 23 Apr 2025
Viewed by 361
Abstract
We investigated the attitude control of a towfish to enhance the image quality of its sound navigation ranging system. The target towfish is equipped with two elevators on the horizontal tail wing, and attitude control is performed using these actuators. In particular, when [...] Read more.
We investigated the attitude control of a towfish to enhance the image quality of its sound navigation ranging system. The target towfish is equipped with two elevators on the horizontal tail wing, and attitude control is performed using these actuators. In particular, when a high-resolution sonar system is mounted on the towfish, any irregular movement can cause defocusing; thus, attitude control of the towfish is essential. Because the towfish has no thrust of its own and moves by being connected to a mother vessel via a cable, its attitude must be controlled by comprehensively analyzing its towing force and equation of motion. Herein, we propose a method for calculating the region where the attitude of the towfish can be controlled based on changes in the center of gravity, towing speed, and towing point. We conducted a water tank test to verify this method and confirmed that the attitude of the towfish could be controlled in controllable areas but not in uncontrollable regions. Full article
(This article belongs to the Special Issue Models and Simulations of Ship Manoeuvring)
Show Figures

Figure 1

16 pages, 6610 KiB  
Article
Numerical Simulation of a Bird-Inspired UAV Which Turns Without a Tail Through Proverse Yaw
by Wee-Beng Tay, Timothy Shawn Jie-Sheng Chong, Jia-Qiang Chan, Woei-Leong Chan and Boo-Cheong Khoo
Biomimetics 2025, 10(4), 253; https://doi.org/10.3390/biomimetics10040253 - 21 Apr 2025
Viewed by 496
Abstract
This study numerically explores a bird-inspired tail-less unmanned aerial vehicle (UAV) design which can turn through proverse yaw by using a bell-shaped spanload wing configuration. The research methodology consists of two phases. In the first phase, the objective is to use computational fluid [...] Read more.
This study numerically explores a bird-inspired tail-less unmanned aerial vehicle (UAV) design which can turn through proverse yaw by using a bell-shaped spanload wing configuration. The research methodology consists of two phases. In the first phase, the objective is to use computational fluid dynamics (CFD) simulations to validate that the bell-shaped spanload wing configuration produces proverse yaw, instead of adverse yaw, similar to other typical wing configurations. This allows the UAV to turn without a tail. The solver used is OpenFOAM and a special self-written routine is used to allow the grid to move together with the UAV, which has six degrees-of-freedom (6DOFs) to translate and rotate when its ailerons deflect after reaching steady motion. In the second phase, we investigate the effect of the sweep angle on the proverse yaw. Results show that proverse yaw is indeed produced due to the bell-shaped spanload wing configuration, as CFD simulation shows the UAV turning after aileron deflection. The effect of the sweep angle is more profound on the proverse yaw as simulations show that increasing the sweep angle by 10° increases the turning effect slightly, but decreasing it by 10° instead results in adverse yaw. These findings will have important implications for improving aircraft efficiencies and the development of wing designs. Full article
(This article belongs to the Special Issue Bioinspired Flapping Wing Aerodynamics: Progress and Challenges)
Show Figures

Figure 1

16 pages, 2968 KiB  
Article
Achromatic Markings as Male Quality Indicators in a Crepuscular Bird
by Richard Schnürmacher, Rhune Vanden Eynde, Jitse Creemers, Eddy Ulenaers, Marcel Eens, Ruben Evens and Michiel Lathouwers
Biology 2025, 14(3), 298; https://doi.org/10.3390/biology14030298 - 16 Mar 2025
Viewed by 1271
Abstract
Secondary sexual traits, such as specific body parts or colouration, play an important role in mating interactions. It has been proposed that they function as quality indicators driven by sexual selection. In birds, much attention has been paid to the study of feather [...] Read more.
Secondary sexual traits, such as specific body parts or colouration, play an important role in mating interactions. It has been proposed that they function as quality indicators driven by sexual selection. In birds, much attention has been paid to the study of feather pigmentation, especially in diurnal passerines. However, recent research demonstrates that structural achromatic colours are likely to be of similar importance for communication, especially for species inhabiting poorly lit environments and that are active at night. Using 15 years of capture–recapture data from a long-term study on adult European Nightjars (Caprimulgus europaeus), we investigated the role of males’ white tail and wing markings as secondary sexual traits. We show that the inter-individual variation in marking size exceeds that of the other morphometric variables, suggesting that wing and tail markings could be subject to sexual selection. Older males, individuals with a higher body condition index, and long-term territory holders had larger markings, while these effects were particularly pronounced in terminal tail feather markings. The importance of markings for signalling is likely related to their observed use in social displays. Pronounced site differences in tail marking sizes and annual variation suggest environmental factors acting on the ornaments that remain to be further examined. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

18 pages, 5575 KiB  
Article
Structural Optimization and Experimental Validation of a Composite Engine Mount Designed for VTOL UAV
by Milica Milić, Jelena Svorcan, Toni Ivanov, Ivana Atanasovska, Dejan Momčilović, Željko Flajs and Boško Rašuo
Aerospace 2025, 12(3), 178; https://doi.org/10.3390/aerospace12030178 - 24 Feb 2025
Cited by 2 | Viewed by 1200
Abstract
Unmanned air vehicles (UAVs) with vertical take-off and landing (VTOL) capabilities, equipped with rotors, have been gaining popularity in recent years for their numerous applications. Through joint efforts, engineers and researchers try to make these novel aircraft more maneuverable and reliable, but also [...] Read more.
Unmanned air vehicles (UAVs) with vertical take-off and landing (VTOL) capabilities, equipped with rotors, have been gaining popularity in recent years for their numerous applications. Through joint efforts, engineers and researchers try to make these novel aircraft more maneuverable and reliable, but also lighter, more efficient and quieter. This paper presents the optimization of one of the vital aircraft parts, the composite engine mount, based on the genetic algorithm (GA) combined with the defined finite element (FE) parameterized model. The mount structure is assumed as a layered carbon composite whose lay-up sequence, defined by layer thicknesses and orientations, is being optimized with the goal of achieving its minimal mass with respect to different structural constraints (failure criteria or maximal strain). To achieve a sufficiently reliable structure, a worst-case scenario, representing a sudden impact, is assumed by introducing forces at one end, while the mount is structurally constrained at the places where it is connected to wings. The defined optimization methodology significantly facilitated and accelerated the mount design process, after which it was manufactured and experimentally tested. Static forces representing the two thrust forces generated by the propellers connected to electric engines (at 100% throttle and the asymmetric case where one engine is at approximately 40% throttle and the other at 100%) and loads from the tail surfaces were introduced by weights, while the strain was measured at six different locations. Satisfactory comparison between numerical and experimental results is achieved, while slight inconsistencies can be attributed to manufacturing errors and idealizations of the FE model. Full article
Show Figures

Figure 1

20 pages, 2314 KiB  
Article
Perpetuation of Avian Influenza from Molt to Fall Migration in Wild Swan Geese (Anser cygnoides): An Agent-Based Modeling Approach
by John Y. Takekawa, Chang-Yong Choi, Diann J. Prosser, Jeffery D. Sullivan, Nyambayar Batbayar and Xiangming Xiao
Viruses 2025, 17(2), 196; https://doi.org/10.3390/v17020196 - 30 Jan 2025
Viewed by 1813
Abstract
Wild waterfowl are considered to be the reservoir of avian influenza, but their distinct annual life cycle stages and their contribution to disease dynamics are not well understood. Studies of the highly pathogenic avian influenza (HPAI) virus have primarily focused on wintering grounds, [...] Read more.
Wild waterfowl are considered to be the reservoir of avian influenza, but their distinct annual life cycle stages and their contribution to disease dynamics are not well understood. Studies of the highly pathogenic avian influenza (HPAI) virus have primarily focused on wintering grounds, where human and poultry densities are high year-round, compared with breeding grounds, where migratory waterfowl are more isolated. Few if any studies of avian influenza have focused on the molting stage where wild waterfowl congregate in a few selected wetlands and undergo the simultaneous molt of wing and tail feathers during a vulnerable flightless period. The molting stage may be one of the most important periods for the perpetuation of the disease in waterfowl, since during this stage, immunologically naïve young birds and adults freely intermix prior to the fall migration. Our study incorporated empirical data from virological field samplings and markings of Swan Geese (Anser cygnoides) on their breeding grounds in Mongolia in an integrated agent-based model (ABM) that included susceptible–exposed–infectious–recovered (SEIR) states. Our ABM results provided unique insights and indicated that individual movements between different molting wetlands and the transmission rate were the key predictors of HPAI perpetuation. While wetland extent was not a significant predictor of HPAI perpetuation, it had a large effect on the number of infections and associated death toll. Our results indicate that conserving undisturbed habitats for wild waterfowl during the molting stage of the breeding season could reduce the risk of HPAI transmission. Full article
Show Figures

Figure 1

30 pages, 13740 KiB  
Article
Accurate Tracking of Agile Trajectories for a Tail-Sitter UAV Under Wind Disturbances Environments
by Xu Zou, Zhenbao Liu, Zhen Jia and Baodong Wang
Drones 2025, 9(2), 83; https://doi.org/10.3390/drones9020083 - 22 Jan 2025
Viewed by 1313
Abstract
To achieve more robust and accurate tracking control of high maneuvering trajectories for a tail-sitter fixed-wing unmanned aerial vehicle (UAV) operating within its full envelope in outdoor environments, a novel control approach is proposed. Firstly, the study rigorously demonstrates the differential flatness property [...] Read more.
To achieve more robust and accurate tracking control of high maneuvering trajectories for a tail-sitter fixed-wing unmanned aerial vehicle (UAV) operating within its full envelope in outdoor environments, a novel control approach is proposed. Firstly, the study rigorously demonstrates the differential flatness property of tail-sitter fixed-wing UAV dynamics using a comprehensive aerodynamics model, which incorporates wind effects without simplification. Then, utilizing the derived flatness functions and the treatments for singularity, the study presents a complete process of the differential flatness transform. This transformation maps the desired maneuver trajectory to a state-input trajectory, facilitating control design. Leveraging an existing controller from the reference literature, trajectory tracking is implemented. Subsequently, a low-cost wind estimation method operating during all flight phases is proposed to estimate the wind effects involved in the model. The wind estimation method involves generating a virtual wind measurement utilizing a low-fidelity tail-sitter model. The virtual wind measurement is integrated with real wind data obtained from the pitot tube and processed through fusion using an extended Kalman filter. Finally, the effectiveness of our methods is confirmed through comprehensive real-world experiments conducted in outdoor settings. The results demonstrate superior robustness and accuracy in controlling challenging agile maneuvering trajectories compared to the existing method. Additionally, the test results highlight the effectiveness of our method in wind estimation. Full article
Show Figures

Figure 1

45 pages, 23251 KiB  
Review
Autogiros: Review and Classification
by Tsvetomir Gechev, Krasimir Nedelchev and Ivan Kralov
Aerospace 2025, 12(1), 48; https://doi.org/10.3390/aerospace12010048 - 13 Jan 2025
Viewed by 2237
Abstract
The article reviews autogiros, concentrating on their flight history, development, application, flight principle, components, and advantages over other aircraft. Firstly, the history of autogiros is presented, focusing on breakthrough inventions and clarifying their significance for overall rotorcraft development. Then, contemporary scientific research on [...] Read more.
The article reviews autogiros, concentrating on their flight history, development, application, flight principle, components, and advantages over other aircraft. Firstly, the history of autogiros is presented, focusing on breakthrough inventions and clarifying their significance for overall rotorcraft development. Then, contemporary scientific research on the autogiro is reviewed in detail, and the available research gap is determined. The flight principle and technical fundamentals of autogiros are also briefly discussed, and a comparison between autogiros, helicopters, and fixed-wing aircraft is performed. Autogiros’ applications for civil, military, and mixed purposes are pointed out and schematically presented. The main part of the article comprises an overview of the different components and systems in the structure of the reviewed aircraft, including the main rotor, propeller, engine, cockpit, and others. Additionally, a comprehensive classification mostly concerning contemporary and homologated autogiros is described and schematically presented. Experimental and compound gyroplane designs are also examined and marked in the classification. The aircraft are categorized depending on the main structure type, mast availability, number of seats, number of rotors and rotor blades, rotor and mast position, propeller and tail type and position, pre-rotator type, and power source. The idea of different autogiro variants presented in the classification is enhanced with visual examples. This work is an addition to the efforts of promoting autogiros and research on them. It offers complete information regarding the aircraft and could serve as a kind of starting point for engineers in the design process of such types of flying machines. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 16248 KiB  
Article
Design and Prototype Testing of a Smart SMA Actuator for UAV Foldable Tail Wings
by Yan Cheng, Jun Wang, Rui Li, Xiaojun Gu, Yahui Zhang, Jihong Zhu and Weihong Zhang
Actuators 2024, 13(12), 499; https://doi.org/10.3390/act13120499 - 6 Dec 2024
Cited by 1 | Viewed by 1249
Abstract
The foldable tail wing system of UAVs offers advantages such as reducing the envelope size and improving storage space utilization. However, due to the compact tail wing space, achieving multi-modal locking and unlocking functionality presents significant challenges. This paper designs a new smart [...] Read more.
The foldable tail wing system of UAVs offers advantages such as reducing the envelope size and improving storage space utilization. However, due to the compact tail wing space, achieving multi-modal locking and unlocking functionality presents significant challenges. This paper designs a new smart SMA actuator for the use of UAV foldable tail wings. The prototype testing demonstrated the advantages and engineering practicality of the actuator. The core content includes three main parts: thermomechanical testing of the SMA actuation performance, structural design of the actuator, and the fabrication and actuation testing of the prototype. The key parameters related to actuation performance, such as phase transformation temperature and actuation force, were determined through DSC and tensile testing. The geometric parameters of the tail wing were determined through kinetics and kinematic analyses. Through the linkage design of two kinematic pairs, the SMA actuator enables both the deployment and locking of the tail wing. The prototype testing results of the folding tail wing show that, after vibration and temperature variation tests, the SMA actuator is still able to output an actuation stroke of 2.15 mm within 20 ms. The SMA actuator integrates locking for both modes of the tail wing and unlocking during mode transitions, offering advantages such as fast response and minimal space requirements. It provides an effective solution tailored to the needs of the foldable tail wing system. Full article
Show Figures

Figure 1

28 pages, 16084 KiB  
Article
Structural Design and Kinematic Modeling of Highly Biomimetic Flapping-Wing Aircraft with Perching Functionality
by Wenyang Pu, Qiang Shen, Yuhang Yang, Yiming Lu and Yaojie Yan
Biomimetics 2024, 9(12), 736; https://doi.org/10.3390/biomimetics9120736 - 3 Dec 2024
Cited by 1 | Viewed by 1987
Abstract
Birds use their claws to perch on branches, which helps them to recover energy and observe their surroundings; however, most biomimetic flapping-wing aircraft can only fly, not perch. This study was conducted on the basis of bionic principles to replicate birds’ claw and [...] Read more.
Birds use their claws to perch on branches, which helps them to recover energy and observe their surroundings; however, most biomimetic flapping-wing aircraft can only fly, not perch. This study was conducted on the basis of bionic principles to replicate birds’ claw and wing movements in order to design a highly biomimetic flapping-wing aircraft capable of perching. First, a posture conversion module with a multi-motor hemispherical gear structure allows the aircraft to flap, twist, swing, and transition between its folded and unfolded states. The perching module, based on helical motion, converts the motor’s rotational movement into axial movement to extend and retract the claws, enabling the aircraft to perch. The head and tail motion module has a dual motor that enables the aircraft’s head and tail to move as flexibly as a bird’s. Kinematic models of the main functional modules are established and verified for accuracy. Functional experiments on the prototype show that it can perform all perching actions, demonstrating multi-modal motion capabilities and providing a foundation upon which to develop dynamics models and control methods for highly biomimetic flapping-wing aircraft with perching functionality. Full article
Show Figures

Figure 1

Back to TopTop