Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = tail fat metabolites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 10244 KiB  
Article
Yeast Culture Supplementation Improves Meat Quality by Enhancing Immune Response and Purine Metabolism of Small-Tail Han Sheep (Ovis aries)
by Xiaobo Bai, Liwei Wang, Hua Sun, Lvhui Sun, Jianghong An, Shaoyin Fu, Mengran Zhao, Fang Liu, Xiaoqi Ren, Zheng Liu, Jiangfeng He and Yongbin Liu
Int. J. Mol. Sci. 2025, 26(10), 4512; https://doi.org/10.3390/ijms26104512 - 9 May 2025
Viewed by 506
Abstract
Yeast culture is widely used in ruminants to improve gut health, immunity, and productivity; however, its impact on meat quality remains unclear. This study aimed to investigate the effects of yeast culture supplementation in the basic diet on meat quality of Small-tail Han [...] Read more.
Yeast culture is widely used in ruminants to improve gut health, immunity, and productivity; however, its impact on meat quality remains unclear. This study aimed to investigate the effects of yeast culture supplementation in the basic diet on meat quality of Small-tail Han sheep. A total of 40 Small-tail Han sheep (17.5 ± 1.2 kg) were randomly assigned to two treatment groups, with 20 sheep in each group. The sheep were fed either a basic diet (CON) or the basic diet supplemented with 1% yeast culture (YSD) for 90 days. At the end of the trial, the Longissimus dorsi muscle (LOD) of the sheep was collected for meat quality evaluation, as well as transcriptome and metabolome analyses. Meat quality data were analyzed using t-tests, while transcriptome and metabolome data were analyzed using bioinformatics tools. The results showed that YSD supplementation significantly reduced carcass fat content (p < 0.05) and increased the pH values (p < 0.05) of LOD compared to the CON group. Multi-omics analysis revealed significant changes in the levels of 349 transcripts and 149 metabolites (p < 0.05) in the YSD group relative to the CON group. These changes were primarily associated with immune response pathways and purine metabolism. Further integrated transcriptomics and metabolomics analysis identified significant alterations in the expression of adenylate kinase 4 (AK4) and ribonucleotide reductase M2 (RRM2), which influenced purine metabolites, such as ADP, GMP, 3′-AMP, 3′-GMP, dGDP, adenine, guanosine, and guanine. These metabolites were markedly upregulated in the LOD of the sheep supplemented with yeast culture. In conclusion, yeast culture supplementation improved the meat quality of Small-tail Han sheep, potentially through the enhancement of immune response and purine metabolism. These findings offer valuable insights into the molecular mechanisms underlying the effects of yeast culture on animal health and meat quality. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

17 pages, 5615 KiB  
Article
Sex-Specific Lipid Profiles and Flavor Volatiles in Giant Salamander (Andrias davidianus) Tails Revealed by Lipidomics and GC-IMS
by Shibo Zhao, Jinghong Yu, Linjie Xi, Xiangdong Kong, Jinjin Pei, Pengfei Jiang, Ruichang Gao and Wengang Jin
Foods 2024, 13(19), 3048; https://doi.org/10.3390/foods13193048 - 25 Sep 2024
Cited by 3 | Viewed by 1504
Abstract
To elucidate the relationships between lipid components and odor traits, this study comparatively characterized the distinct lipid compositions and flavor volatiles in giant salamander tails of different sexes via mass-spectrometry-based lipidomics and GC-IMS. A total of 3145 fat metabolites were detected in male [...] Read more.
To elucidate the relationships between lipid components and odor traits, this study comparatively characterized the distinct lipid compositions and flavor volatiles in giant salamander tails of different sexes via mass-spectrometry-based lipidomics and GC-IMS. A total of 3145 fat metabolites were detected in male and female giant salamander tails, with the largest contributors being triglycerides (TGs, 840) and phosphatidylcholines (PCs, 383). Notably, the contents of PCs and TGs were greater in female tails than in male tails, and the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were also greater in the female group. Additionally, a total of 45 volatile components were detected, namely, 14 aldehydes, 14 alcohols, 9 ketones, 3 acids, 3 esters, 1 ether, and 1 amine. Alcohols (29.96% to 34.85%) and aldehydes (21.07% to 22.75%) were the predominant volatiles. Multivariate statistical analysis revealed 22 key differential fats and 26 differential odor substances as distinguishing labels between sexes. Correlation analysis revealed that the concentrations of triethylamine, dimethyl sulfide, ethanol-D, and 3-methyl butanal-D were significantly positively correlated with the concentrations of diglyceride (DG) (26:6e), cardiolipin (CL) (59:4), acylcarnitine (AcCa) (22:4), and triglyceride (TG) (52:10) (p < 0.01). Threefold cross-validation revealed that the prediction accuracies of these differential lipids and volatile compounds for sex recognition via the random forest model were 100%. These findings might not only provide insight into the effects of sexes on the lipid and volatile profiles of giant salamander tails but also provide clues for their gender recognition. Full article
Show Figures

Graphical abstract

16 pages, 1739 KiB  
Article
Impact of Feeding Probiotics on Blood Parameters, Tail Fat Metabolites, and Volatile Flavor Components of Sunit Sheep
by Ting Liu, Taiwu Zhang, Yanni Zhang, Le Yang, Yan Duan, Lin Su, Jianjun Tian, Lina Sun, Bohui Wang and Ye Jin
Foods 2022, 11(17), 2644; https://doi.org/10.3390/foods11172644 - 31 Aug 2022
Cited by 6 | Viewed by 3031
Abstract
Sheep crude tail fat has unique nutritional values and is used as a raw material for high-quality natural oil. The purpose of this study was to investigate the effects of probiotics on the metabolites and flavor of sheep crude tail fat. In this [...] Read more.
Sheep crude tail fat has unique nutritional values and is used as a raw material for high-quality natural oil. The purpose of this study was to investigate the effects of probiotics on the metabolites and flavor of sheep crude tail fat. In this study, 12 Sunit sheep were randomly divided into an experimental group (LTF, basal feed + Lactiplantibacillusplantarum powder) and a control group (CTF, basal feed). The results of sheep crude tail fat analysis showed that blood lipid parameters were significantly lower and the expression of fatty acid synthase and stearoyl-CoA desaturase genes higher in the LTF group than in the CTF group (p < 0.05). Metabolomic analysis via liquid chromatography–mass spectrometry showed that the contents of metabolites such as eicosapentaenoic acid, 16-hydroxypalmitic acid, and L-citrulline were higher in the LTF group (p < 0.01). Gas chromatography–mass spectrometry detection of volatile flavor compounds in the tail fat showed that nonanal, decanal, and 1-hexanol were more abundant in the LTF group (p < 0.05). Therefore, Lactiplantibacillus plantarum feeding affected blood lipid parameters, expression of lipid metabolism-related genes, tail fat metabolites, and volatile flavor compounds in Sunit sheep. In this study, probiotics feeding was demonstrated to support high-value sheep crude tail fat production. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 300 KiB  
Article
Growth Performance, Eating Behavior, Digestibility, Blood Metabolites, and Carcass Traits in Growing-Finishing Fat-Tailed Lambs Fed Different Levels of Dietary Neutral Detergent Fiber with High Rumen Undegradable Protein
by Hamidreza Mirzaei-Alamouti, Azam Beiranvand, Arman Abdollahi, Hamid Amanlou, Amlan Kumar Patra and Jörg R. Aschenbach
Agriculture 2021, 11(11), 1101; https://doi.org/10.3390/agriculture11111101 - 5 Nov 2021
Cited by 13 | Viewed by 3308
Abstract
This study was conducted to investigate the effect of decreasing concentrations of dietary neutral detergent fiber (NDF) at high rumen undegradable protein (RUP) on performance, digestibility, chewing activity, blood attributes, and carcass characteristics in 32 weaned male Afshari lambs (90 days of age; [...] Read more.
This study was conducted to investigate the effect of decreasing concentrations of dietary neutral detergent fiber (NDF) at high rumen undegradable protein (RUP) on performance, digestibility, chewing activity, blood attributes, and carcass characteristics in 32 weaned male Afshari lambs (90 days of age; 26 kg initial body weight; BW). Dietary metabolic energy (ME) was increased from 10.6–11.5 and 11.8 MJ/kg dry matter (DM) by replacing alfalfa hay with grain to achieve NDF concentrations of 270, 245, and 220 g/kg DM, respectively, at 66.6 g/kg DM of RUP. The control (CON) diet contained 10.9 MJ/kg ME, 270 g/kg NDF and 59.6 g/kg RUP on DM basis. Rations containedsimilar concentrations of crude protein (CP, 160 g/kg DM). Lambs were slaughtered after a 56-d feeding period. The increase in dietary RUP had no effect on BW and average daily gain (ADG) but tended to decrease apparent digestibility of CP and DM, significantlydecreasedplasma urea concentration, and increased carcass CP content. Other body or carcass characteristics were unchanged. Decreasing dietary fiber at high RUP did not result in adverse effects on BW, ADG, body length, withers height, apparent digestibility of DM and CP, and BFT, but decreased DM intake (1539 vs. 1706 g/d) and feed conversion ratio (FCR; 4.33 vs. 5.39) compared with CON. Gradual reduction in NDF and physically effective NDF did not affecteating, ruminating or chewing times. Plasma glucose concentration was greater for NDF220 than for the three other treatments (p = 0.015).Slaughtering traits were not affected by dietary treatment except for hot carcass weight, which increased in NDF220 and NDF245 compared with NDF270 (p = 0.021). The concentration of meat CP increased in NDF270 versus CON (167 vs. 152 g/kg). Quadratic effects occurred for meat ether extract concentration (highest in NDF220) and fat-tail weight (highest in NDF245). In conclusion, the results showed that increasing the proportion of RUP within dietary CP improves carcass protein accretion. Decreasing dietary NDF to 220 g/kg DM at high RUP does not impair eating behavior and improves FCR in 3-month-old fat-tailed lambs. Full article
(This article belongs to the Section Farm Animal Production)
13 pages, 743 KiB  
Article
Prepartum and Postpartum Feed Restrictions Affect Blood Metabolites and Hormones Reducing Colostrum and Milk Yields in Fat-Tailed Dairy Sheep
by Mousa Zarrin, Meysam Sanginabadi, Mahrokh Nouri, Amir Ahmadpour and Lorenzo E. Hernández-Castellano
Animals 2021, 11(5), 1258; https://doi.org/10.3390/ani11051258 - 27 Apr 2021
Cited by 8 | Viewed by 2613
Abstract
This study aimed to investigate the effect of prepartum and postpartum feed restriction on body weight (BW), blood metabolites, and hormones as well as colostrum and milk yields and compositions in fat-tailed dairy sheep. In this study, 20 multiparous and pregnant ewes were [...] Read more.
This study aimed to investigate the effect of prepartum and postpartum feed restriction on body weight (BW), blood metabolites, and hormones as well as colostrum and milk yields and compositions in fat-tailed dairy sheep. In this study, 20 multiparous and pregnant ewes were randomly allocated to either the control (Ctrl; n = 10) or the feed-restricted (FR; n = 10) groups from week −5 to week 5 relative to parturition. Despite dry matter intake being decreased in the FR group compared to the Ctrl throughout both prepartum and postpartum periods, no differences in BW were detected between groups in any of the studied periods. Feed restriction increased both free fatty acids and beta-hydroxybutyrate concentrations during both prepartum and postpartum periods. Similarly, feed restriction increased triglyceride concentration postpartum. Additionally, feed restriction increased insulin and growth hormone and decreased prolactin concentrations during both prepartum and postpartum periods. Feed restriction caused a decreased colostrum yield and a relative increase of the main colostrum components in the FR group. Similarly, milk yield decreased in the FR group compared to the Ctrl group, although milk components were not affected. In conclusion, feed restriction did not affect BW but decreased colostrum and milk yield in fat-tailed dairy sheep. Full article
(This article belongs to the Special Issue Ruminant Nutrition and Lactation Physiology)
Show Figures

Figure 1

14 pages, 262 KiB  
Article
The Effect of Replacing Wildrye Hay with Mulberry Leaves on the Growth Performance, Blood Metabolites, and Carcass Characteristics of Sheep
by Hua Sun, Yang Luo, Fangfang Zhao, Yaotian Fan, Jingnan Ma, Yaqian Jin, Qirui Hou, Gulzar Ahmed and Hongrong Wang
Animals 2020, 10(11), 2018; https://doi.org/10.3390/ani10112018 - 2 Nov 2020
Cited by 22 | Viewed by 3264
Abstract
The objective of this study was to evaluate the effects of partially substituting for conventional forage, Chinese wildrye (CW), with mulberry leaves (ML) on the growth, digestion, ruminal fermentation, blood metabolites, and meat quality of sheep in a 65-day feedlot study. Thirty-two four-month-old [...] Read more.
The objective of this study was to evaluate the effects of partially substituting for conventional forage, Chinese wildrye (CW), with mulberry leaves (ML) on the growth, digestion, ruminal fermentation, blood metabolites, and meat quality of sheep in a 65-day feedlot study. Thirty-two four-month-old male small-tailed Han sheep (25.15 ± 1.03 kg) were randomly assigned to one of four treatments. The dietary treatments consisted of four proportions of ML (0, 8, 24, and 32%) as a substitute for CW (designated as ML0, ML8, ML24, and ML32, respectively). Rumen digesta and blood samples were collected at day 63 of the trial. Carcass traits were assessed after slaughter at the end of performance period. The results from this study revealed no differences in average daily bodyweight gain (ADG), feed conversion ratio (FCR), and final body weight (FBW) among treatments. The apparent digestibility of dry matter (DM), organic matter (OM), and acid detergent fiber (ADF) was higher in the sheep fed with ML than in those fed CW. The ML24 treatment had a higher digestibility of crude protein (CP) and ether extract (EE). There were no differences (p = 0.13) in ruminal pH values among the treatments. However, there was more microbial protein (p < 0.01) in ML24 and ML32 treatments than the ML0 treatment. Ruminal concentrations of acetate and butyrate were significantly different among treatments, although no difference in concentrations of total volatile fatty acid were found. Additionally, no differences were detected for serum parameters except blood urea nitrogen (BUN). No differences were observed for carcass weight (p = 0.62), dressing percentage (p = 0.31) or longissimus dorsi muscle (LM) area (p = 0.94) among treatments. However, intramuscular fat was higher in the ML24 treatment than in the ML0 treatment. (p < 0.01). There were higher pH values of the 24-h longissimus dorsi in the ML24 treatment than in the ML0 treatment. In addition, the saturated fatty acid (SFA) content was lower (p < 0.01) and the monounsaturated fatty acid (MUFA) content higher (p < 0.01) in the ML24 treatment than in the ML0 treatment. In conclusion, the partially substitution of mulberry leaves for Chinese wildrye in the diet of sheep had a beneficial influence on the growth performance, blood metabolites and carcass characteristics. The inclusion of 24% (air dry basis) mulberry leaf hay in the ration of sheep is recommended based on these findings. Full article
20 pages, 1987 KiB  
Article
Exogenous Liposomal Ceramide-C6 Ameliorates Lipidomic Profile, Energy Homeostasis, and Anti-Oxidant Systems in NASH
by Francesca Zanieri, Ana Levi, David Montefusco, Lisa Longato, Francesco De Chiara, Luca Frenguelli, Sara Omenetti, Fausto Andreola, Tu Vinh Luong, Veronica Massey, Juan Caballeria, Constantino Fondevila, Sriram S Shanmugavelandy, Todd Fox, Giuseppe Mazza, Josepmaria Argemi, Ramon Bataller, Lauren Ashley Cowart, Mark Kester, Massimo Pinzani and Krista Romboutsadd Show full author list remove Hide full author list
Cells 2020, 9(5), 1237; https://doi.org/10.3390/cells9051237 - 16 May 2020
Cited by 19 | Viewed by 5294
Abstract
In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of NASH have been associated with elevated levels [...] Read more.
In non-alcoholic steatohepatitis (NASH), many lines of investigation have reported a dysregulation in lipid homeostasis, leading to intrahepatic lipid accumulation. Recently, the role of dysfunctional sphingolipid metabolism has also been proposed. Human and animal models of NASH have been associated with elevated levels of long chain ceramides and pro-apoptotic sphingolipid metabolites, implicated in regulating fatty acid oxidation and inflammation. Importantly, inhibition of de novo ceramide biosynthesis or knock-down of ceramide synthases reverse some of the pathology of NASH. In contrast, cell permeable, short chain ceramides have shown anti-inflammatory actions in multiple models of inflammatory disease. Here, we investigated non-apoptotic doses of a liposome containing short chain C6-Ceramide (Lip-C6) administered to human hepatic stellate cells (hHSC), a key effector of hepatic fibrogenesis, and an animal model characterized by inflammation and elevated liver fat content. On the basis of the results from unbiased liver transcriptomic studies from non-alcoholic fatty liver disease patients, we chose to focus on adenosine monophosphate activated kinase (AMPK) and nuclear factor-erythroid 2-related factor (Nrf2) signaling pathways, which showed an abnormal profile. Lip-C6 administration inhibited hHSC proliferation while improving anti-oxidant protection and energy homeostasis, as indicated by upregulation of Nrf2, activation of AMPK and an increase in ATP. To confirm these in vitro data, we investigated the effect of a single tail-vein injection of Lip-C6 in the methionine-choline deficient (MCD) diet mouse model. Lip-C6, but not control liposomes, upregulated phospho-AMPK, without inducing liver toxicity, apoptosis, or exacerbating inflammatory signaling pathways. Alluding to mechanism, mass spectrometry lipidomics showed that Lip-C6-treatment reversed the imbalance in hepatic phosphatidylcholines and diacylglycerides species induced by the MCD-fed diet. These results reveal that short-term Lip-C6 administration reverses energy/metabolic depletion and increases protective anti-oxidant signaling pathways, possibly by restoring homeostatic lipid function in a model of liver inflammation with fat accumulation. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

Back to TopTop