Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = systemic acquired resistance food security

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5564 KiB  
Article
Pathogenomic Insights into Xanthomonas oryzae pv. oryzae’s Resistome, Virulome, and Diversity for Improved Rice Blight Management
by Peter Adeolu Adedibu, Oksana Son, Liudmila Tekutyeva and Larissa Balabanova
Life 2024, 14(12), 1690; https://doi.org/10.3390/life14121690 - 20 Dec 2024
Cited by 1 | Viewed by 1312
Abstract
Oryza sativa (rice) is a major staple food targeted for increased production to achieve food security. However, increased production is threatened by several biotic and abiotic factors, of which bacterial blight disease caused by Xanthomonas oryzae pathovar oryzae is severe. Developing effective control [...] Read more.
Oryza sativa (rice) is a major staple food targeted for increased production to achieve food security. However, increased production is threatened by several biotic and abiotic factors, of which bacterial blight disease caused by Xanthomonas oryzae pathovar oryzae is severe. Developing effective control strategies requires an up-to-date understanding of its pathogenomics. This study analyzes the genomes of 30 X. oryzae strains collected from rice-producing regions across five continents to identify genetic elements critical for its pathogenicity and adaptability and for an intraspecific diversity assessment using advanced genomics and bioinformatics tools. Resistome analysis revealed 28 distinct types of antibiotic resistance genes (ARGs), both innate and acquired, indicating a growing threat from multidrug-resistant X. oryzae strains. Sixteen virulent genes, including type III and VI secretion systems, motility genes, and effector proteins, were identified. A unique ‘MexCD-OprJ’ multidrug efflux system was detected in the Tanzanian strains, conferring resistance to multiple antibiotic classes. To curb further ARG emergence, there is a need to regulate the use of antibiotics for X. oryzae control and adopt resistant rice varieties. Transposable elements were also discovered to contribute to X. oryzae pathogenicity, facilitating the horizontal transfer of virulence genes. Pangenome analysis revealed intraspecific variation among the population, with 112 unique CDS having diverse functional roles. Strains registered in the Philippines had the most unique genes. Phylogenetic analysis confirmed the divergent evolution of X. oryzae. This study’s results will aid in identifying more effective management strategies and biocontrol alternatives for sustainable rice production. Full article
(This article belongs to the Special Issue Trends in Microbiology 2025)
Show Figures

Figure 1

18 pages, 3582 KiB  
Article
Hollow Mesoporous Silica Nanoparticles as a New Nanoscale Resistance Inducer for Fusarium Wilt Control: Size Effects and Mechanism of Action
by Chaopu Ding, Yunfei Zhang, Chongbin Chen, Junfang Wang, Mingda Qin, Yu Gu, Shujing Zhang, Lanying Wang and Yanping Luo
Int. J. Mol. Sci. 2024, 25(8), 4514; https://doi.org/10.3390/ijms25084514 - 20 Apr 2024
Cited by 5 | Viewed by 2191
Abstract
In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen [...] Read more.
In agriculture, soil-borne fungal pathogens, especially Fusarium oxysporum strains, are posing a serious threat to efforts to achieve global food security. In the search for safer agrochemicals, silica nanoparticles (SiO2NPs) have recently been proposed as a new tool to alleviate pathogen damage including Fusarium wilt. Hollow mesoporous silica nanoparticles (HMSNs), a unique class of SiO2NPs, have been widely accepted as desirable carriers for pesticides. However, their roles in enhancing disease resistance in plants and the specific mechanism remain unknown. In this study, three sizes of HMSNs (19, 96, and 406 nm as HMSNs-19, HMSNs-96, and HMSNs-406, respectively) were synthesized and characterized to determine their effects on seed germination, seedling growth, and Fusarium oxysporum f. sp. phaseoli (FOP) suppression. The three HMSNs exhibited no side effects on cowpea seed germination and seedling growth at concentrations ranging from 100 to 1500 mg/L. The inhibitory effects of the three HMSNs on FOP mycelial growth were very weak, showing inhibition ratios of less than 20% even at 2000 mg/L. Foliar application of HMSNs, however, was demonstrated to reduce the FOP severity in cowpea roots in a size- and concentration-dependent manner. The three HMSNs at a low concentration of 100 mg/L, as well as HMSNs-19 at a high concentration of 1000 mg/L, were observed to have little effect on alleviating the disease incidence. HMSNs-406 were most effective at a concentration of 1000 mg/L, showing an up to 40.00% decline in the disease severity with significant growth-promoting effects on cowpea plants. Moreover, foliar application of HMSNs-406 (1000 mg/L) increased the salicylic acid (SA) content in cowpea roots by 4.3-fold, as well as the expression levels of SA marker genes of PR-1 (by 1.97-fold) and PR-5 (by 9.38-fold), and its receptor gene of NPR-1 (by 1.62-fold), as compared with the FOP infected control plants. Meanwhile, another resistance-related gene of PAL was also upregulated by 8.54-fold. Three defense-responsive enzymes of POD, PAL, and PPO were also involved in the HMSNs-enhanced disease resistance in cowpea roots, with varying degrees of reduction in activity. These results provide substantial evidence that HMSNs exert their Fusarium wilt suppression in cowpea plants by activating SA-dependent SAR (systemic acquired resistance) responses rather than directly suppressing FOP growth. Overall, for the first time, our results indicate a new role of HMSNs as a potent resistance inducer to serve as a low-cost, highly efficient, safe and sustainable alternative for plant disease protection. Full article
(This article belongs to the Special Issue Bioactive Nanoparticles: Synthesis and Potential Applications)
Show Figures

Figure 1

19 pages, 1332 KiB  
Review
Beneficial Microorganisms as a Sustainable Alternative for Mitigating Biotic Stresses in Crops
by Ana María García-Montelongo, Amelia C. Montoya-Martínez, Pamela Helue Morales-Sandoval, Fannie Isela Parra-Cota and Sergio de los Santos-Villalobos
Stresses 2023, 3(1), 210-228; https://doi.org/10.3390/stresses3010016 - 15 Jan 2023
Cited by 11 | Viewed by 2988
Abstract
Nowadays, population growth, the global temperature increase, and the appearance of emerging diseases in important crops generate uncertainty regarding world food security. The use of agrochemicals has been the “go-to” solution for the control of phytopathogenic microorganisms, such as Magnaporte oryzae, causing [...] Read more.
Nowadays, population growth, the global temperature increase, and the appearance of emerging diseases in important crops generate uncertainty regarding world food security. The use of agrochemicals has been the “go-to” solution for the control of phytopathogenic microorganisms, such as Magnaporte oryzae, causing blast disease in rice and other cereals; Botrytis cinerea, causing gray mold in over 500 plant species; and Puccinia spp., causing rust in cereals. However, their excessive use has harmed human health, as well as ecosystems (contaminating water, and contributing to soil degradation); besides, phytopathogens can develop resistance to them. The inoculation of plant growth-promoting microorganisms (PGPMs) to crops is a sustainable strategy for increasing the yield and quality of crops and mitigating biotic stresses. Likewise, PGPMs, such as Pseudomonas, Bacillus, and Trichoderma, can trigger a series of signals and reactions in the plant that lead to the induction of systemic resistance, a mechanism by which plants react to microorganism stimulation by activating their defense system, resulting in protection against future pathogen attack. These plant defense mechanisms help to mitigate biotic stresses that threaten global food security. Thus, the study of these mechanisms at molecular, transcriptomic, and metabolomic levels is indispensable to elucidate how stresses affect globally important crops. Full article
(This article belongs to the Special Issue Physiological and Molecular Mechanisms of Plant Stress Tolerance)
Show Figures

Figure 1

26 pages, 1255 KiB  
Review
Mechanisms of Plant Natural Immunity and the Role of Selected Oxylipins as Molecular Mediators in Plant Protection
by Piotr Barbaś, Dominika Skiba, Piotr Pszczółkowski and Barbara Sawicka
Agronomy 2022, 12(11), 2619; https://doi.org/10.3390/agronomy12112619 - 25 Oct 2022
Cited by 7 | Viewed by 2792
Abstract
Weed resistance to herbicides should be minimized, as this can lead to serious limitations in the food security for people around the world. The aim of the research was to summarize the latest research on the reactions of plants to pesticides, including herbicides, [...] Read more.
Weed resistance to herbicides should be minimized, as this can lead to serious limitations in the food security for people around the world. The aim of the research was to summarize the latest research on the reactions of plants to pesticides, including herbicides, in order to assess the possibility of using jasmonates and brassinosteroids to stimulate the natural, induced systemic immunity of plants, as well as outline the possibility of the interaction of oxylipins with ethylene, salicylates and other compounds. Multiple types of resistance correspond to developed mechanisms of resistance to more than one herbicide, and this resistance has been induced by selection processes. Activation of the mechanisms of systemic immunity depends on the reception of extracellular signals, and their transduction between individual cells of the plant organism. Jasmonic acid (JA), as well as its methyl ester (MeJA), ethylene (ET), salicylic acid (SA) and methyl salicylate (MeSA), are key plant growth regulators that play a fundamental role in this process. JA and ET activate the mechanisms of induced systemic immunity (ISR), while SA determines the acquired systemic immunity (SAR). JA, MeJA and OPDA belong to the family of oxylipins, which are derivatives of linolenic acid (CLA), and are a group of active signaling molecules that are involved in the regulation of many physiological processes, including those that are related to herbicide resistance. Understanding the signaling mechanism in oxylipins, and mainly brassicosteroids (BRs) and jasmonates (Jas), would allow a better understanding of how immune responses are triggered in plants. Full article
Show Figures

Figure 1

21 pages, 4116 KiB  
Article
Chitosan Nanoparticles Inactivate Alfalfa Mosaic Virus Replication and Boost Innate Immunity in Nicotiana glutinosa Plants
by Ahmed Abdelkhalek, Sameer H. Qari, Mohamed Abd Al-Raheem Abu-Saied, Abdallah Mohamed Khalil, Hosny A. Younes, Yasser Nehela and Said I. Behiry
Plants 2021, 10(12), 2701; https://doi.org/10.3390/plants10122701 - 8 Dec 2021
Cited by 44 | Viewed by 5137
Abstract
Plant viral infection is one of the most severe issues in food security globally, resulting in considerable crop production losses. Chitosan is a well-known biocontrol agent against a variety of plant infections. However, research on combatting viral infections is still in its early [...] Read more.
Plant viral infection is one of the most severe issues in food security globally, resulting in considerable crop production losses. Chitosan is a well-known biocontrol agent against a variety of plant infections. However, research on combatting viral infections is still in its early stages. The current study investigated the antiviral activities (protective, curative, and inactivation) of the prepared chitosan/dextran nanoparticles (CDNPs, 100 µg mL−1) on Nicotiana glutinosa plants. Scanning electron microscope (SEM) and dynamic light scattering analysis revealed that the synthesized CDNPs had a uniform, regular sphere shapes ranging from 20 to 160 nm in diameter, with an average diameter of 91.68 nm. The inactivation treatment was the most effective treatment, which resulted in a 100% reduction in the alfalfa mosaic virus (AMV, Acc# OK413670) accumulation level. On the other hand, the foliar application of CDNPs decreased disease severity and significantly reduced viral accumulation levels by 70.43% and 61.65% in protective and curative treatments, respectively, under greenhouse conditions. Additionally, the induction of systemic acquired resistance, increasing total carbohydrates and total phenolic contents, as well as triggering the transcriptional levels of peroxidase, pathogen-related protein-1, and phenylalanine ammonia-lyase were observed. In light of the results, we propose that the potential application of CDNPs could be an eco-friendly approach to enhance yield and a more effective therapeutic elicitor for disease management in plants upon induction of defense systems. Full article
(This article belongs to the Special Issue Agricultural Nanotechnology)
Show Figures

Figure 1

21 pages, 1417 KiB  
Article
Isolation and Molecular Identification of Virulence, Antimicrobial and Heavy Metal Resistance Genes in Livestock-Associated Methicillin-Resistant Staphylococcus aureus
by Chumisa C. Dweba, Oliver T. Zishiri and Mohamed E. El Zowalaty
Pathogens 2019, 8(2), 79; https://doi.org/10.3390/pathogens8020079 - 14 Jun 2019
Cited by 40 | Viewed by 8162
Abstract
Staphylococcus aureus is one of the most important pathogens of humans and animals. Livestock production contributes a significant proportion to the South African Gross Domestic Product. Consequently, the aim of this study was to determine for the first time the prevalence, virulence, antibiotic [...] Read more.
Staphylococcus aureus is one of the most important pathogens of humans and animals. Livestock production contributes a significant proportion to the South African Gross Domestic Product. Consequently, the aim of this study was to determine for the first time the prevalence, virulence, antibiotic and heavy metal resistance in livestock-associated S. aureus isolated from South African livestock production systems. Microbial phenotypic methods were used to detect the presence of antibiotic and heavy metal resistance. Furthermore, molecular DNA based methods were used to genetically determine virulence as well as antibiotic and heavy metal resistance determinants. Polymerase chain reaction (PCR) confirmed 217 out of 403 (53.8%) isolates to be S. aureus. Kirby-Bauer disc diffusion method was conducted to evaluate antibiotic resistance and 90.8% of S. aureus isolates were found to be resistant to at least three antibiotics, and therefore, classified as multidrug resistant. Of the antibiotics tested, 98% of the isolates demonstrated resistance towards penicillin G. High resistance was shown against different heavy metals, with 90% (196/217), 88% (192/217), 86% (188/217) and 84% (183/217) of the isolates resistant to 1500 µg/mL concentration of Cadmium (Cd), Zinc (Zn), Lead (Pb) and Copper (Cu) respectively. A total of 10 antimicrobial resistance and virulence genetic determinants were screened for all livestock associated S. aureus isolates. Methicillin-resistant S. aureus (MRSA) isolates were identified, by the presence of mecC, in 27% of the isolates with a significant relationship (p < 0.001)) with the host animal. This is the first report of mecC positive LA-MRSA in South Africa and the African continent. The gene for tetracycline resistance (tetK) was the most frequently detected of the screened genes with an overall prevalence of 35% and the highest prevalence percentage was observed for goats (56.76%) followed by avian species (chicken, duck and wild birds) (42.5%). Virulence-associated genes were observed across all animal host species. The study reports the presence of luks/pv, a gene encoding the PVL toxin previously described to be a marker for community acquired-MRSA, suggesting the crossing of species between human and livestock. The high prevalence of S. aureus from the livestock indicates a major food security and healthcare threat. This threat is further compounded by the virulence of the pathogen, which causes numerous clinical manifestations. The phenomenon of co-selection is observed in this study as isolates exhibited resistance to both antibiotics and heavy metals. Further, all the screened antibiotic and heavy metal resistance genes did not correspond with the phenotypic resistance. Full article
Show Figures

Figure 1

Back to TopTop