Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = synthesized melanin nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3194 KiB  
Article
Green Myco-Synthesis of Zinc Oxide Nanoparticles Using Cortinarius sp.: Hepatoprotective, Antimicrobial, and Antioxidant Potential for Biomedical Applications
by Uzma Fazal, Ahmad Zada, Muhammad Hanif, Shiou Yih Lee, Mohammad Faisal, Abdulrahman A. Alatar, Tahira Sultana and Sohail
Microorganisms 2025, 13(5), 956; https://doi.org/10.3390/microorganisms13050956 - 22 Apr 2025
Cited by 1 | Viewed by 824
Abstract
The transformative effect of nanotechnology is revolutionizing medicine by introducing new therapeutic approaches. This study explores the utilization of aqueous extract from mushroom (Cortinarius sp.) used as a reducing agent to prepare zinc oxide myco-nanoparticles (ZnO-MNPs) in an eco-friendly manner. The synthesis [...] Read more.
The transformative effect of nanotechnology is revolutionizing medicine by introducing new therapeutic approaches. This study explores the utilization of aqueous extract from mushroom (Cortinarius sp.) used as a reducing agent to prepare zinc oxide myco-nanoparticles (ZnO-MNPs) in an eco-friendly manner. The synthesis of ZnO-MNPs has been confirmed by various characterization studies, including UV-vis spectroscopy, which revealed an absorption peak at 378 nm; X-ray diffraction (XRD) analysis, which revealed a wurtzite hexagonal structure; and Fourier transform infrared spectra (FTIR), which showed stabilizing agents around the ZnO-MNPs. The effectiveness of ZnO-MNPs as an anti-cancer agent was evaluated by monitoring liver biochemical parameters against hepatotoxicity caused by carbon tetrachloride (CCl4) in Balb C mice. The results showed that the levels of catalase, glutathione (GSH), and total protein were significantly lower, while alanine aminotransferase (ALT), aspartate aminotransferase (ASAT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), melanin dialdehyde (MDA), and total bilirubin (TB) were significantly higher in each of the CCl4 treatment groups. ZnO-MNP treatment significantly reduced the toxicological effects of CCl4 but did not completely restore the accumulation. The antimicrobial efficacy of ZnO-MNPs was investigated and showed potential results against common pathogens, including Bacillus subtilis (29.05 ± 0.76), Bacillus meurellus (27.05 ± 0.5), Acetobacter rhizospherensis (23.36 ± 0.5), and Escherichia coli (25.86 ± 0.80), while antifungal activity was relatively lower. Moreover, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that ZnO-MNPs are strong antioxidant agents. Overall, these findings highlight the effectiveness of myco-synthesized ZnO-NPs in combating pathogenic diseases, their promising role in cancer therapy, and their potential as a biomaterial option for future therapeutic applications. Full article
(This article belongs to the Special Issue Plant Extracts and Antimicrobials, Second Edition)
Show Figures

Figure 1

16 pages, 9245 KiB  
Article
Melanin-Based Nanoparticles for Lymph Node Tattooing: Experimental, Histopathological and Ultrastructural Study
by Marta Baselga, Antonio Güemes, Cristina Yus, Teresa Alejo, Víctor Sebastián, Dolores Arribas, Gracia Mendoza, Eva Monleón and Manuel Arruebo
Nanomaterials 2024, 14(13), 1149; https://doi.org/10.3390/nano14131149 - 4 Jul 2024
Viewed by 2248
Abstract
In breast cancer, Targeted Axillary Dissection (TAD) allows for the selective excision of the sentinel lymph node (SLN) during primary tumor surgery. TAD consists of the resection of labelled SLNs prior to neoadjuvant chemotherapy (NACT). Numerous clinical and preclinical studies have explored the [...] Read more.
In breast cancer, Targeted Axillary Dissection (TAD) allows for the selective excision of the sentinel lymph node (SLN) during primary tumor surgery. TAD consists of the resection of labelled SLNs prior to neoadjuvant chemotherapy (NACT). Numerous clinical and preclinical studies have explored the use of carbon-based colloids for SLN tattooing prior to NACT. However, carbon vectors show varying degrees of inflammatory reactions and, in about one fifth of cases, carbon particles migrate via the lymphatic pathway to other nodes, causing the SLN to mismatch the tattooed node. To overcome these limitations, in this study, we explored the use of melanin as a staining endogenous pigment. We synthesized and characterized melanin-loaded polymeric nanoparticles (Mel-NPs) and used them to tattoo lymph nodes in pig animal models given the similarity in the size of the human and pig nodes. Mel-NPs tattooed lymph nodes showed high identification rates, reaching 83.3% positive identification 16 weeks after tattooing. We did not observe any reduction in the identification as time increased, implying that the colloid is stable in the lymph node tissue. In addition, we performed histological and ultrastructural studies to characterize the biological behavior of the tag. We observed foreign-body-like granulomatous inflammatory responses associated with Mel-NPs, characterized by the formation of multinucleated giant cells. In addition, electron microscopy studies showed that uptake is mainly performed by macrophages, and that macrophages undergo cellular damage associated with particle uptake. Full article
Show Figures

Graphical abstract

15 pages, 4531 KiB  
Article
Pyrrole-Doped Polydopamine-Pyrrole (PDA-nPY) Nanoparticles with Tunable Size and Improved NIR Absorption for Photothermal Therapy
by Yuan He, Ziyang Li, Huiling Su, Yanan Sun, Wei Shi, Yunfeng Yi, Dongtao Ge and Zhongxiong Fan
Pharmaceuticals 2023, 16(12), 1642; https://doi.org/10.3390/ph16121642 - 23 Nov 2023
Cited by 7 | Viewed by 2241
Abstract
Polydopamine (PDA) as a melanin-like biomimetic material with excellent biocompatibility, full spectrum light absorption capacity and antioxidation property has been extensively applied in the biomedical field. Based on the high reactivity of dopamine (DA), exploiting new strategies to fabricate novel PDA-based nano-biomaterials with [...] Read more.
Polydopamine (PDA) as a melanin-like biomimetic material with excellent biocompatibility, full spectrum light absorption capacity and antioxidation property has been extensively applied in the biomedical field. Based on the high reactivity of dopamine (DA), exploiting new strategies to fabricate novel PDA-based nano-biomaterials with controllable size and improved performance is valuable and desirable. Herein, we reported a facile way to synthesize pyrrole-doped polydopamine-pyrrole nanoparticles (PDA-nPY NPs) with tunable size and enhanced near-infrared (NIR) absorption capacity through self-oxidative polymerization of DA with PY in an alkaline ethanol/H2O/NH4OH solution. The PDA-nPY NPs maintain excellent biocompatibility and surface reactivity as PDA. By regulating the volume of added PY, PDA-150PY NPs with a smaller size (<100 nm) and four-fold higher absorption intensity at 808 nm than that of PDA can be successfully fabricated. In vitro and in vivo experiments effectively further demonstrate that PDA-150PY NPs can effectively inhibit tumor growth and completely thermally ablate a tumor. It is believed that these PY doped PDA-nPY NPs can be a potential photothermal (PT) agent in biomedical application. Full article
Show Figures

Figure 1

12 pages, 2462 KiB  
Article
Initial Study on Physiochemical Property and Antibacterial Activity against Skin-Infecting Bacteria of Silver Nanoparticles Biologically Produced Using Crude Melanin from Xylaria sp.
by Linh Doan, Nhu K. H. Vo and Hanh T. M. Tran
Cosmetics 2023, 10(6), 150; https://doi.org/10.3390/cosmetics10060150 - 1 Nov 2023
Cited by 3 | Viewed by 3322
Abstract
Silver nanoparticles (AgNPs) produced by biological methods are safer for biomedical applications. Melanins were initially reported to facilitate AgNPs synthesis. Our research found that the stromata of some Xylaria species contained significant amounts of melanins, which had strong antioxidant and anti-ultraviolet activities without [...] Read more.
Silver nanoparticles (AgNPs) produced by biological methods are safer for biomedical applications. Melanins were initially reported to facilitate AgNPs synthesis. Our research found that the stromata of some Xylaria species contained significant amounts of melanins, which had strong antioxidant and anti-ultraviolet activities without toxicity toward human skin cells. This study reported the characteristics and antibacterial activities against skin-infecting bacteria (Staphylococcus aureus and Cutibacterium acnes) of AgNPs synthesized using crude melanin extracted from stromata of Xylaria sp. AgNPs were successfully synthesized by mixing the crude melanin solution with 0.1 M AgNO3 (25:1, v/v) and incubating for 3 h at 100 °C. The SEM found that the average size of the synthesized AgNPs was 18.85 ± 3.75 nm. The melanin-mediated AgNPs displayed significantly higher antibacterial activities against the tested acne-causing bacteria compared to the positive control (Erythromycin). Specifically, the melanin-mediated AgNPs inhibited 90% of S. aureus and C. acnes at 62.5 (µg/mL) and 15.625 (µg/mL), respectively, whereas it required erythromycin up to 4000 (µg/mL) to achieve the same activities. This research illustrated the feasibility of using crude melanin of Xylaria sp. for the direct synthesis of AgNPs and the potential use of the synthesized AgNPs for treating acne-causing bacteria (with further investigation needed). Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

19 pages, 3786 KiB  
Article
Biosynthetic Melanin/Ce6-Based Photothermal and Sonodynamic Therapies Significantly Improved the Anti-Tumor Efficacy
by Yuping Yang, Yaling He, Meijun Zhou, Meijun Fu, Xinxin Li, Hongmei Liu and Fei Yan
Pharmaceutics 2023, 15(8), 2058; https://doi.org/10.3390/pharmaceutics15082058 - 31 Jul 2023
Cited by 6 | Viewed by 1955
Abstract
Photothermal therapy (PTT) and sonodynamic therapy (SDT) are becoming promising therapeutic modalities against various tumors in recent years. However, the single therapeutic modality with SDT or PTT makes it difficult to achieve a satisfactory anti-tumor outcome due to their own inherent limitations, such [...] Read more.
Photothermal therapy (PTT) and sonodynamic therapy (SDT) are becoming promising therapeutic modalities against various tumors in recent years. However, the single therapeutic modality with SDT or PTT makes it difficult to achieve a satisfactory anti-tumor outcome due to their own inherent limitations, such as poor tissue penetration for the near-infrared (NIR) laser and the limited cytotoxic reactive oxygen species (ROS) generated from conventional sonosensitizers irradiated by ultrasound (US). Here, we successfully biosynthesized melanin with a controllable particle size with genetically engineered bacteria harboring a heat-inducible gene circuit. The biosynthetic melanin with 8 nm size and chlorin e6 (Ce6) was further encapsulated into liposomes and obtained SDT/PTT dual-functional liposomes (designated as MC@Lip). The resulting MC@Lip had an approximately 100 nm particle size, with 74.71% ± 0.54% of encapsulation efficiency for melanin and 94.52% ± 0.78% for Ce6. MC@Lip exhibited efficient 1O2 production and photothermal conversion capability upon receiving irradiation by US and NIR laser, producing significantly enhanced anti-tumor efficacy in vitro and in vivo. Especially, US and NIR laser irradiation of tumors received with MC@Lip lead to complete tumor regression in all tested tumor-bearing mice, indicating the great advantage of the combined use of SDT and PTT. More importantly, MC@Lip possessed good photoacoustic (PA) and fluorescence dual-modal imaging performance, making it possible to treat tumors under imaging guidance. Our study provides a novel approach to synthesize a melanin nanoparticle with controllable size and develops a promising combined SDT/PTT strategy to treat tumors. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

17 pages, 3000 KiB  
Article
Anti-Aging and Lightening Effects of Au-Decorated Zeolite-Based Biocompatible Nanocomposites in Epidermal Delivery Systems
by Seungyeon Lee, Geunjeong Lee, Giyoung Jeon, Hayeong Lee, Suhyeon Park, Youngju Sohn, Youngkum Park and Seongwoo Ryu
J. Funct. Biomater. 2023, 14(2), 66; https://doi.org/10.3390/jfb14020066 - 26 Jan 2023
Cited by 3 | Viewed by 2308
Abstract
The main challenges in developing zeolites as cosmetic drug delivery systems are their cytotoxicities and the formation of drug-loading pore structures. In this study, Au-decorated zeolite nanocomposites were synthesized as an epidermal delivery system. Thus, 50 nm-sized Au nanoparticles were successfully deposited on [...] Read more.
The main challenges in developing zeolites as cosmetic drug delivery systems are their cytotoxicities and the formation of drug-loading pore structures. In this study, Au-decorated zeolite nanocomposites were synthesized as an epidermal delivery system. Thus, 50 nm-sized Au nanoparticles were successfully deposited on zeolite 13X (super cage (α) and sodalite (β) cage structures) using the Turkevich method. Various cosmetic drugs, such as niacinamide, sulforaphane, and adenosine, were loaded under in vitro and in vivo observations. The Au-decorated zeolite nanocomposites exhibited effective cosmetic drug-loading efficiencies of 3.5 to 22.5 wt% under various conditions. For in vitro cytotoxic observations, B16F10 cells were treated with various cosmetic drugs. Niacinamide, sulforaphane, and adenosine-loaded Au-decorated zeolite nanocomposites exhibited clear cell viability of over 80%. Wrinkle improvement and a reduction in melanin content on the skin surface were observed in vivo. The adenosine delivery system exhibited an enhanced wrinkle improvement of 203% compared to 0.04 wt% of the pure adenosine system. The niacinamide- and sulforaphane-loaded Au-decorated zeolite nanocomposites decreased the skin surface melanin content by 123% and 222%, respectively, compared to 2 and 0.01 wt% of pure niacinamide and sulforaphane systems, respectively. As a result, Au-decorated zeolite nanocomposites show great potential as cosmetic drug epidermal delivery systems for both anti-aging and lightening effects. Full article
(This article belongs to the Section Biomaterials for Drug Delivery)
Show Figures

Figure 1

19 pages, 6266 KiB  
Article
Bioactive Carboxymethyl Cellulose (CMC)-Based Films Modified with Melanin and Silver Nanoparticles (AgNPs)—The Effect of the Degree of CMC Substitution on the In Situ Synthesis of AgNPs and Films’ Functional Properties
by Szymon Macieja, Bartosz Środa, Beata Zielińska, Swarup Roy, Artur Bartkowiak and Łukasz Łopusiewicz
Int. J. Mol. Sci. 2022, 23(24), 15560; https://doi.org/10.3390/ijms232415560 - 8 Dec 2022
Cited by 19 | Viewed by 3614
Abstract
Green synthesis of nanoparticles for use in food packaging or biomedical applications is attracting increasing interest. In this study, the effect of the degree of substitution (0.7, 0.9 and 1.2) of a carboxymethylcellulose polymer matrix on the synthesis and properties of silver nanoparticles [...] Read more.
Green synthesis of nanoparticles for use in food packaging or biomedical applications is attracting increasing interest. In this study, the effect of the degree of substitution (0.7, 0.9 and 1.2) of a carboxymethylcellulose polymer matrix on the synthesis and properties of silver nanoparticles using melanin as a reductant was investigated. For this purpose, the mechanical, UV–Vis barrier, crystallinity, morphology, antioxidant and antimicrobial properties of the films were determined, as well as the color and changes in chemical bonds. The degree of substitution effected noticeable changes in the color of the films (the L* parameter was 2.87 ± 0.76, 5.59 ± 1.30 and 13.45 ± 1.11 for CMC 0.7 + Ag, CMC 0.9 + Ag and CMC 1.2 + Ag samples, respectively), the UV–Vis barrier properties (the transmittance at 280 nm was 4.51 ± 0.58, 7.65 ± 0.84 and 7.98 ± 0.75 for CMC 0.7 + Ag, CMC 0.9 + Ag and CMC 1.2 + Ag, respectively) or the antimicrobial properties of the films (the higher the degree of substitution, the better the antimicrobial properties of the silver nanoparticle-modified films). The differences in the properties of films with silver nanoparticles synthesized in situ might be linked to the increasing dispersion of silver nanoparticles as the degree of CMC substitution increases. Potentially, such films could be used in food packaging or biomedical applications. Full article
(This article belongs to the Special Issue Bioactive Packaging Materials)
Show Figures

Figure 1

26 pages, 6659 KiB  
Review
Molecular Events in the Melanogenesis Cascade as Novel Melanoma-Targeted Small Molecules: Principle and Development
by Kazumasa Wakamatsu, Akira Ito, Yasuaki Tamura, Tokimasa Hida, Takafumi Kamiya, Toshihiko Torigoe, Hiroyuki Honda, Shosuke Ito and Kowichi Jimbow
Cancers 2022, 14(22), 5588; https://doi.org/10.3390/cancers14225588 - 14 Nov 2022
Cited by 4 | Viewed by 2976
Abstract
Malignant melanoma is one of the most malignant of all cancers. Melanoma occurs at the epidermo–dermal interface of the skin and mucosa, where small vessels and lymphatics are abundant. Consequently, from the onset of the disease, melanoma easily metastasizes to other organs throughout [...] Read more.
Malignant melanoma is one of the most malignant of all cancers. Melanoma occurs at the epidermo–dermal interface of the skin and mucosa, where small vessels and lymphatics are abundant. Consequently, from the onset of the disease, melanoma easily metastasizes to other organs throughout the body via lymphatic and blood circulation. At present, the most effective treatment method is surgical resection, and other attempted methods, such as chemotherapy, radiotherapy, immunotherapy, targeted therapy, and gene therapy, have not yet produced sufficient results. Since melanogenesis is a unique biochemical pathway that functions only in melanocytes and their neoplastic counterparts, melanoma cells, the development of drugs that target melanogenesis is a promising area of research. Melanin consists of small-molecule derivatives that are always synthesized by melanoma cells. Amelanosis reflects the macroscopic visibility of color changes (hypomelanosis). Under microscopy, melanin pigments and their precursors are present in amelanotic melanoma cells. Tumors can be easily targeted by small molecules that chemically mimic melanogenic substrates. In addition, small-molecule melanin metabolites are toxic to melanocytes and melanoma cells and can kill them. This review describes our development of chemo-thermo-immunotherapy based on the synthesis of melanogenesis-based small-molecule derivatives and conjugation to magnetite nanoparticles. We also introduce the other melanogenesis-related chemotherapy and thermal medicine approaches and discuss currently introduced targeted therapies with immune checkpoint inhibitors for unresectable/metastatic melanoma. Full article
(This article belongs to the Special Issue Novel Targets and Approaches in Cancer Therapy)
Show Figures

Graphical abstract

13 pages, 3849 KiB  
Article
Synthesis of Biomimetic Melanin-Like Multifunctional Nanoparticles for pH Responsive Magnetic Resonance Imaging and Photothermal Therapy
by Jing Qu, Devin Guillory, Pohlee Cheah, Bin Tian, Jie Zheng, Yongjian Liu, Courtney Cates, Amol V. Janorkar and Yongfeng Zhao
Nanomaterials 2021, 11(8), 2107; https://doi.org/10.3390/nano11082107 - 19 Aug 2021
Cited by 7 | Viewed by 2935
Abstract
The design and development of multifunctional nanoparticles have attracted great interest in biomedical research. This study aims to prepare pH-responsive melanin-like nanoparticles for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy. The new multifunctional nanoparticles (amino-Fe-PDANPs) are synthesized by copolymerization of [...] Read more.
The design and development of multifunctional nanoparticles have attracted great interest in biomedical research. This study aims to prepare pH-responsive melanin-like nanoparticles for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy. The new multifunctional nanoparticles (amino-Fe-PDANPs) are synthesized by copolymerization of dopamine and its derivative amino-N-[2-(diethylamino) ethyl]-3,4-dihydroxy-benzenepropanamide (N-Dopa) at room temperature. The size of nanoparticles can be controlled by NaOH concentration. The incorporation of N-Dopa is characterized by NMR and FT-IR. From transmission electron microscopy (TEM), the nanoparticles exhibit excellent dispersion stability in water and are spherical in shape. The MRI measurement has demonstrated that amino-Fe-PDANPs have a significant signal enhancement in responding to the acidic solution. Confirmed by the photothermal study, the nanoparticles exhibit a high photothermal conversion efficiency. The melanin-like multifunctional nanoparticles integrate both diagnosis and therapeutic functionalities, indicating the potential for theranostic application. Full article
(This article belongs to the Special Issue Smart Nanomaterials for Biomedical Applications)
Show Figures

Graphical abstract

13 pages, 3488 KiB  
Article
Inkjet Printing of Synthesized Melanin Nanoparticles as a Biocompatible Matrix for Pharmacologic Agents
by Matthew Ballard, Ashkan Shafiee, Elinor Grage, Max DeMarco, Anthony Atala and Elham Ghadiri
Nanomaterials 2020, 10(9), 1840; https://doi.org/10.3390/nano10091840 - 15 Sep 2020
Cited by 8 | Viewed by 4489
Abstract
Melanin is a natural biopigment that is produced by melanocytes and can be found in most living organisms. The unique physical and chemical properties of melanin render it potentially useful for numerous applications, particularly those in which a biocompatible functional material is required. [...] Read more.
Melanin is a natural biopigment that is produced by melanocytes and can be found in most living organisms. The unique physical and chemical properties of melanin render it potentially useful for numerous applications, particularly those in which a biocompatible functional material is required. Herein, we introduce one important technology in which melanin can be utilized: a drug delivery system in terms of a biocompatible matrix. However, extracting melanin from different biological sources is costly and time-consuming and introduces variabilities in terms of chemical structure, properties, and functions. Hence, a functionally reproducible system is hard to achieve using biologically extracted melanin. Here we report the synthesis of melanin nanoparticles of controlled uniform sizes and chemical characteristics. The optical, chemical, and structural characteristics of synthesized nanoparticles were characterized by optical confocal photoluminescence (PL) imaging, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Zeta potentiometry. The melanin nanoparticles have 100 nm size and a narrow size distribution. The advantage of a nanoparticle structure is its enhanced surface-to-volume ratio compared to bulk pigments, which is important for applications in which controlling the microscopic surface area is essential. Using the inkjet printing technique, we developed melanin thin films with minimum ink waste and loaded them with methylene blue (our representative drug) to test the drug-loading ability of the melanin nanoparticles. Inkjet printing allowed us to create smooth uniform films with precise deposition and minimum ink-waste. The spectroscopic analysis confirmed the attachment of the “drug” onto the melanin nanoparticles as a matrix. Hence, our data identify melanin as a material system to integrate into drug release applications. Full article
(This article belongs to the Special Issue 3D Printing and Nanotechnology in Biology and Medical Applications)
Show Figures

Figure 1

7 pages, 1325 KiB  
Communication
Hydroxyl Radical-Suppressing Mechanism and Efficiency of Melanin-Mimetic Nanoparticles
by Koichiro Hayashi, Atsuto Tokuda and Wataru Sakamoto
Int. J. Mol. Sci. 2018, 19(8), 2309; https://doi.org/10.3390/ijms19082309 - 7 Aug 2018
Cited by 2 | Viewed by 3743
Abstract
Harnessing melanins to scavenge free radicals in vivo may yield treatment methods for inflammatory disorders. Furthermore, elucidation of the mechanism underlying melanin-mediated suppression of free radicals, which is yet unclear, is warranted. Herein, we chemically synthesized melanin-mimetic nanoparticles (MeNPs) and investigated the mechanism [...] Read more.
Harnessing melanins to scavenge free radicals in vivo may yield treatment methods for inflammatory disorders. Furthermore, elucidation of the mechanism underlying melanin-mediated suppression of free radicals, which is yet unclear, is warranted. Herein, we chemically synthesized melanin-mimetic nanoparticles (MeNPs) and investigated the mechanism underlying their use. MeNPs efficiently suppressed hydroxyl radicals by converting some MeNP hydroxyl groups to ketone groups. Furthermore, they suppressed hydroxyl radicals produced by lipopolysaccharide-treated Kupffer cells involved in hepatic cirrhosis pathogenesis, without causing significant cytotoxicity. The present results indicate the suitability of MeNPs to treat hepatic cirrhosis; however, further in vivo studies are warranted to determine their treatment efficacy. Full article
(This article belongs to the Special Issue Cell-Biomaterial Interaction)
Show Figures

Graphical abstract

15 pages, 2814 KiB  
Article
Preparation of Functionalized Magnetic Fe3O4@Au@polydopamine Nanocomposites and Their Application for Copper(II) Removal
by Yanxia Li, Lu Huang, Wenxuan He, Yiting Chen and Benyong Lou
Polymers 2018, 10(6), 570; https://doi.org/10.3390/polym10060570 - 23 May 2018
Cited by 22 | Viewed by 6167
Abstract
Polydopamine (PDA) displays many striking properties of naturally occurring melanin in optics, electricity, and biocompatibility. Another valuable feature of polydopamine lies in its chemical structure that incorporates many functional groups such as amine, catechol and imine. In this study, a nanocomposite of magnetic [...] Read more.
Polydopamine (PDA) displays many striking properties of naturally occurring melanin in optics, electricity, and biocompatibility. Another valuable feature of polydopamine lies in its chemical structure that incorporates many functional groups such as amine, catechol and imine. In this study, a nanocomposite of magnetic Fe3O4@Au@polydopamine nanopaticles (Fe3O4@Au@ PDA MNPs) was synthesized. Carboxyl functionalized Fe3O4@Au nanoparticles (NPs) were successfully embedded in a layer of PDA through dopamine oxypolymerization in alkaline solution. Through the investigation of adsorption behavior to Cu(II), combined with high sensitive electrochemical detection, the as-prepared magnetic nanocomposites (MNPs) have been successfully applied in the separation and analysis of Cu(II). The experimental parameters of temperature, Cu(II) concentration and pH were optimized. Results showed that the as-prepared MNPs can reach saturation adsorption after adsorbing 2 h in neutral environment. Furthermore, the as-prepared MNPs can be easily regenerated by temperature control and exhibits a good selectivity compared to other metal ions. The prepared Fe3O4@Au@PDA MNPs are expected to act as a kind of adsorbent for Cu(II) deep removal from contaminated waters. Full article
(This article belongs to the Special Issue Core-Shell Structured Polymers)
Show Figures

Figure 1

19 pages, 3820 KiB  
Article
Size Control and Fluorescence Labeling of Polydopamine Melanin-Mimetic Nanoparticles for Intracellular Imaging
by Devang R. Amin, Caroline Sugnaux, King Hang Aaron Lau and Phillip B. Messersmith
Biomimetics 2017, 2(3), 17; https://doi.org/10.3390/biomimetics2030017 - 6 Sep 2017
Cited by 40 | Viewed by 10456
Abstract
As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis [...] Read more.
As synthetic analogs of the natural pigment melanin, polydopamine nanoparticles (NPs) are under active investigation as non-toxic anticancer photothermal agents and as free radical scavenging therapeutics. By analogy to the widely adopted polydopamine coatings, polydopamine NPs offer the potential for facile aqueous synthesis and incorporation of (bio)functional groups under mild temperature and pH conditions. However, clear procedures for the convenient and reproducible control of critical NP properties such as particle diameter, surface charge, and loading with functional molecules have yet to be established. In this work, we have synthesized polydopamine-based melanin-mimetic nanoparticles (MMNPs) with finely controlled diameters spanning ≈25 to 120 nm and report on the pH-dependence of zeta potential, methodologies for PEGylation, and the incorporation of fluorescent organic molecules. A comprehensive suite of complementary techniques, including dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM), X-ray photoelectron spectroscopy (XPS), zeta-potential, ultravioletvisible (UV–Vis) absorption and fluorescence spectroscopy, and confocal microscopy, was used to characterize the MMNPs and their properties. Our PEGylated MMNPs are highly stable in both phosphate-buffered saline (PBS) and in cell culture media and exhibit no cytotoxicity up to at least 100 µg mL−1 concentrations. We also show that a post-functionalization methodology for fluorophore loading is especially suitable for producing MMNPs with stable fluorescence and significantly narrower emission profiles than previous reports, suggesting they will be useful for multimodal cell imaging. Our results pave the way towards biomedical imaging and possibly drug delivery applications, as well as fundamental studies of MMNP size and surface chemistry dependent cellular interactions. Full article
(This article belongs to the Special Issue Bioinspired Catechol-Based Systems: Chemistry and Applications)
Show Figures

Graphical abstract

9 pages, 3139 KiB  
Article
Melanin-Associated Synthesis of SERS-Active Nanostructures and the Application for Monitoring of Intracellular Melanogenesis
by Haixin Dong, Zhiming Liu, Huiqing Zhong, Hui Yang, Yan Zhou, Yuqing Hou, Jia Long, Jin Lin and Zhouyi Guo
Nanomaterials 2017, 7(3), 70; https://doi.org/10.3390/nano7030070 - 20 Mar 2017
Cited by 12 | Viewed by 6174
Abstract
Melanin plays an indispensable role in the human body. It serves as a biological reducer for the green synthesis of precious metal nanoparticles. Melanin–Ag nanocomposites were successfully produced which exhibited very strong surface-enhanced Raman scattering (SERS) effect because of the reducibility property of [...] Read more.
Melanin plays an indispensable role in the human body. It serves as a biological reducer for the green synthesis of precious metal nanoparticles. Melanin–Ag nanocomposites were successfully produced which exhibited very strong surface-enhanced Raman scattering (SERS) effect because of the reducibility property of melanin. A melanin–Ag composite structure was synthesized in situ in melanin cells, and SERS technique was performed for the rapid imaging and quantitative assay of intracellular melanin. This imaging technique was also used to successfully trace the formation and secretion of intracellular melanin after stimulation with melanin-stimulating hormones. Based on the self-reducing property of melanin, the proposed SERS imaging method can provide potentially powerful analytical detection tools to study the biological functions of melanin and to prevent and cure melanin-related diseases. Full article
(This article belongs to the Special Issue Nanomaterials for SERS Applications)
Show Figures

Figure 1

Back to TopTop