Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = symmetry of molecular elements interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6464 KiB  
Article
Prospects on Mixed Tutton Salt (K0.86Na0.14)2Ni(SO4)2(H2O)6 as a Thermochemical Heat Storage Material
by Jacivan V. Marques, João G. de Oliveira Neto, Otávio C. da Silva Neto, Adenilson O. dos Santos and Rossano Lang
Processes 2025, 13(1), 1; https://doi.org/10.3390/pr13010001 - 24 Dec 2024
Cited by 7 | Viewed by 971
Abstract
In this paper, a novel mixed Tutton salt (K0.86Na0.14)2Ni(SO4)2(H2O)6 was successfully synthesized as a single crystal and evaluated as a thermochemical heat storage material. Its thermal and thermochemical properties were [...] Read more.
In this paper, a novel mixed Tutton salt (K0.86Na0.14)2Ni(SO4)2(H2O)6 was successfully synthesized as a single crystal and evaluated as a thermochemical heat storage material. Its thermal and thermochemical properties were correlated with the structure, which was determined by powder X-ray diffraction using the Le Bail and Rietveld methods. The elemental ratio between the K+ and Na+ monovalent cations was established by energy-dispersive X-ray spectroscopy. Similar compounds such as Na2Ni(SO4)2(H2O)4 and K2Ni(SO4)2(H2O)6 were also synthesized and used for structural comparisons. The (K0.86Na0.14)2Ni(SO4)2(H2O)6 salt crystallizes in monoclinic symmetry with the P21/c-space group, typical of hexahydrate crystals from the Tutton salt family. The lattice parameters closely resemble those of K2Ni(SO4)2(H2O)6. A comprehensive analysis of the intermolecular contacts, based on Hirshfeld surfaces and 2D fingerprint mappings, revealed that the primary interactions are hydrogen bonds (H···O/O···H) and ion-dipole interactions (K/Na···O/O···Na/K). The unit cell exhibits minimal void space, accounting for only 0.2%, indicative of strong atomic packing. The intermolecular molecular and atomic packing are important factors influencing crystal lattice stabilization and thermal energy supplied to release crystallographic H2O. The thermal stability of mixed Tutton salt ranges from 300 K to 365 K. Under the dehydration of its six H2O molecules, the dehydration reaction enthalpy reaches 349.8 kJ/mol, yielding a thermochemical energy storage density of 1.79 GJ/m3. With an H2O desorption temperature ≤393 K and a high energy storage density ≥1.3 GJ/m3 (criteria established for applications at the domestic level), the (K0.86Na0.14)2Ni(SO4)2(H2O)6 shows potential as a thermochemical material for small-sized heat batteries. Full article
Show Figures

Figure 1

12 pages, 7159 KiB  
Article
Synthesis and Solid-State X-ray Structure of the Mononuclear Palladium(II) Complex Based on 1,2,3-Triazole Ligand
by Hessa H. Al-Rasheed, Matti Haukka, Saied M. Soliman, Abdullah Mohammed Al-Majid, M. Ali, Ayman El-Faham and Assem Barakat
Crystals 2022, 12(10), 1335; https://doi.org/10.3390/cryst12101335 - 21 Sep 2022
Viewed by 2327
Abstract
Herein, we described the synthesis and X-ray crystal structure of the new [Pd(3)2Cl2] complex with 1,2,3-triazole-based ligand (3). In the unit cell, there are two [Pd(3)2Cl2] molecules, and the [...] Read more.
Herein, we described the synthesis and X-ray crystal structure of the new [Pd(3)2Cl2] complex with 1,2,3-triazole-based ligand (3). In the unit cell, there are two [Pd(3)2Cl2] molecules, and the asymmetric unit comprised half of this formula due to the presence of an inversion symmetry element at the Pd(II) center. The monoclinic unit cell volume is 1327.85(6) Å3, with crystal parameters of a = 10.7712(2) Å, b = 6.8500(2) Å, and c = 18.2136(6) Å, while β = 98.851(2)°. The structure comprised two trans triazole ligand units coordinated to the Pd(II) ion via one of the N-atoms of the triazole moiety. In addition, the Pd(II) is further coordinated with two trans chloride groups, where each of the trans bonds is equidistant. The crystal structure of the [Pd(3)2Cl2] complex was compared with that for free triazole ligand 3. It was found that the coordinated ligand showed less twist around the C–N bond compared to free triazole ligand 3. The molecular packing of the latter is found controlled by short O…H, N…H, C…N, and C…C interactions in addition to the short Cl…F interhalogen and π–π interactions. H…H (23.5%), Cl…H (14.4%), N…H (14.3%), and O…H (11.2%) are the most dominant contacts. In the [Pd(3)2Cl2] complex, no significant interhalogen or π–π interactions were detected. In this case, Cl…H (31.1%), H…H (16.7%), O…H (11.6%), and F…H (9.7%) are the most dominant contacts. Full article
(This article belongs to the Special Issue New Trends in Crystals at Saudi Arabia (Volume II))
Show Figures

Figure 1

13 pages, 7105 KiB  
Article
Scaled in Cartesian Coordinates Ab Initio Molecular Force Fields of DNA Bases: Application to Canonical Pairs
by Igor Kochikov, Anna Stepanova and Gulnara Kuramshina
Molecules 2022, 27(2), 427; https://doi.org/10.3390/molecules27020427 - 10 Jan 2022
Viewed by 1785
Abstract
The model of Regularized Quantum Mechanical Force Field (RQMFF) was applied to the joint treatment of ab initio and experimental vibrational data of the four primary nucleobases using a new algorithm based on the scaling procedure in Cartesian coordinates. The matrix of scaling [...] Read more.
The model of Regularized Quantum Mechanical Force Field (RQMFF) was applied to the joint treatment of ab initio and experimental vibrational data of the four primary nucleobases using a new algorithm based on the scaling procedure in Cartesian coordinates. The matrix of scaling factors in Cartesian coordinates for the considered molecules includes diagonal elements for all atoms of the molecule and off-diagonal elements for bonded atoms and for some non-bonded atoms (1–3 and some 1–4 interactions). The choice of the model is based on the results of the second-order perturbation analysis of the Fock matrix for uncoupled interactions using the Natural Bond Orbital (NBO) analysis. The scaling factors obtained within this model as a result of solving the inverse problem (regularized Cartesian scale factors) of adenine, cytosine, guanine, and thymine molecules were used to correct the Hessians of the canonical base pairs: adenine–thymine and cytosine–guanine. The proposed procedure is based on the block structure of the scaling matrix for molecular entities with non-covalent interactions, as in the case of DNA base pairs. It allows avoiding introducing internal coordinates (or coordinates of symmetry, local symmetry, etc.) when scaling the force field of a compound of a complex structure with non-covalent H-bonds. Full article
Show Figures

Figure 1

16 pages, 1422 KiB  
Article
Comparison Analysis of Gene Expression Profiles Proximity Metrics
by Sergii Babichev, Lyudmyla Yasinska-Damri, Igor Liakh and Bohdan Durnyak
Symmetry 2021, 13(10), 1812; https://doi.org/10.3390/sym13101812 - 28 Sep 2021
Cited by 6 | Viewed by 1985
Abstract
The problems of gene regulatory network (GRN) reconstruction and the creation of disease diagnostic effective systems based on genes expression data are some of the current directions of modern bioinformatics. In this manuscript, we present the results of the research focused on the [...] Read more.
The problems of gene regulatory network (GRN) reconstruction and the creation of disease diagnostic effective systems based on genes expression data are some of the current directions of modern bioinformatics. In this manuscript, we present the results of the research focused on the evaluation of the effectiveness of the most used metrics to estimate the gene expression profiles’ proximity, which can be used to extract the groups of informative gene expression profiles while taking into account the states of the investigated samples. Symmetry is very important in the field of both genes’ and/or proteins’ interaction since it undergirds essentially all interactions between molecular components in the GRN and extraction of gene expression profiles, which allows us to identify how the investigated biological objects (disease, state of patients, etc.) contribute to the further reconstruction of GRN in terms of both the symmetry and understanding the mechanism of molecular element interaction in a biological organism. Within the framework of our research, we have investigated the following metrics: Mutual information maximization (MIM) using various methods of Shannon entropy calculation, Pearson’s χ2 test and correlation distance. The accuracy of the investigated samples classification was used as the main quality criterion to evaluate the appropriate metric effectiveness. The random forest classifier (RF) was used during the simulation process. The research results have shown that results of the use of various methods of Shannon entropy within the framework of the MIM metric disagree with each other. As a result, we have proposed the modified mutual information maximization (MMIM) proximity metric based on the joint use of various methods of Shannon entropy calculation and the Harrington desirability function. The results of the simulation have also shown that the correlation proximity metric is less effective in comparison to both the MMIM metric and Pearson’s χ2 test. Finally, we propose the hybrid proximity metric (HPM) that considers both the MMIM metric and Pearson’s χ2 test. The proposed metric was investigated within the framework of one-cluster structure effectiveness evaluation. To our mind, the main benefit of the proposed HPM is in increasing the objectivity of mutually similar gene expression profiles extraction due to the joint use of the various effective proximity metrics that can contradict with each other when they are used alone. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

14 pages, 5368 KiB  
Communication
Synthesis, Crystal Structure, Spectroscopic Properties, and Hirshfeld Surface Analysis of Diaqua [3,14-dimethyl-2,6,13,17 tetraazatricyclo(16.4.0.07,12)docosane]copper(II) Dibromide
by Sunghwan Jeon, Ján Moncol, Milan Mazúr, Marián Valko and Jong-Ha Choi
Crystals 2019, 9(7), 336; https://doi.org/10.3390/cryst9070336 - 28 Jun 2019
Cited by 10 | Viewed by 3895
Abstract
A newly prepared Cu(II) complex salt, Cu(L1)(H2O)2Br2, where L1 is 3,14-dimethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12) docosane, is characterized by elemental and crystallographic analyses. The Cu(II) center is coordinated by four nitrogen atoms of macrocyclic ligand and [...] Read more.
A newly prepared Cu(II) complex salt, Cu(L1)(H2O)2Br2, where L1 is 3,14-dimethyl-2,6,13,17-tetraazatricyclo(16.4.0.07,12) docosane, is characterized by elemental and crystallographic analyses. The Cu(II) center is coordinated by four nitrogen atoms of macrocyclic ligand and the axial position by two water molecules. The macrocyclic ligand adopts an optimally stable trans-III conformation with normal Cu–N bond lengths of 2.018 (3) and 2.049 (3) Å and long axial Cu1–O1W length of 2.632 (3) Å due to the Jahn–Teller effect. The complex is stabilized by hydrogen bonds formed between the O atoms of water molecules and bromide anions. The bromide anion is connected to the neighboring complex cations and water molecules through N–H···Br and O–H···Br hydrogen bonds, respectively. The g-factors obtained from the electron spin resonance spectrum show the typical trend of g > g > 2.0023, which is in a good accordance to the dx2-y2 ground state. It reveals a coordination sphere of tetragonal symmetry for the Cu(II) ion. The infrared and electronic absorption spectral properties of the complex are also discussed. Hirshfeld surface analysis represents that the H···H, H···Br/Br···H and H···O/O···H contacts are the major molecular interactions in the prepared complex. Full article
Show Figures

Graphical abstract

15 pages, 3943 KiB  
Article
Spatial Organization of Five-Fold Morphology as a Source of Geometrical Constraint in Biology
by Juan López-Sauceda, Jorge López-Ortega, Gerardo Abel Laguna Sánchez, Jacobo Sandoval Gutiérrez, Ana Paola Rojas Meza and José Luis Aragón
Entropy 2018, 20(9), 705; https://doi.org/10.3390/e20090705 - 14 Sep 2018
Cited by 1 | Viewed by 4839
Abstract
A basic pattern in the body plan architecture of many animals, plants and some molecular and cellular systems is five-part units. This pattern has been understood as a result of genetic blueprints in development and as a widely conserved evolutionary character. Despite some [...] Read more.
A basic pattern in the body plan architecture of many animals, plants and some molecular and cellular systems is five-part units. This pattern has been understood as a result of genetic blueprints in development and as a widely conserved evolutionary character. Despite some efforts, a definitive explanation of the abundance of pentagonal symmetry at so many levels of complexity is still missing. Based on both, a computational platform and a statistical spatial organization argument, we show that five-fold morphology is substantially different from other abundant symmetries like three-fold, four-fold and six-fold symmetries in terms of spatial interacting elements. We develop a measuring system to determine levels of spatial organization in 2D polygons (homogeneous or heterogeneous partition of defined areas) based on principles of regularity in a morphospace. We found that spatial organization of five-fold symmetry is statistically higher than all other symmetries studied here (3 to 10-fold symmetries) in terms of spatial homogeneity. The significance of our findings is based on the statistical constancy of geometrical constraints derived from spatial organization of shapes, beyond the material or complexity level of the many different systems where pentagonal symmetry occurs. Full article
(This article belongs to the Special Issue Biological Statistical Mechanics)
Show Figures

Graphical abstract

Back to TopTop