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Abstract: Herein, we described the synthesis and X-ray crystal structure of the new [Pd(3)2Cl2]
complex with 1,2,3-triazole-based ligand (3). In the unit cell, there are two [Pd(3)2Cl2] molecules, and
the asymmetric unit comprised half of this formula due to the presence of an inversion symmetry
element at the Pd(II) center. The monoclinic unit cell volume is 1327.85(6) Å3, with crystal parameters
of a = 10.7712(2) Å, b = 6.8500(2) Å, and c = 18.2136(6) Å, while β = 98.851(2)◦. The structure comprised
two trans triazole ligand units coordinated to the Pd(II) ion via one of the N-atoms of the triazole
moiety. In addition, the Pd(II) is further coordinated with two trans chloride groups, where each of the
trans bonds is equidistant. The crystal structure of the [Pd(3)2Cl2] complex was compared with that
for free triazole ligand 3. It was found that the coordinated ligand showed less twist around the C–N
bond compared to free triazole ligand 3. The molecular packing of the latter is found controlled by
short O . . . H, N . . . H, C . . . N, and C . . . C interactions in addition to the short Cl . . . F interhalogen
and π–π interactions. H . . . H (23.5%), Cl . . . H (14.4%), N . . . H (14.3%), and O . . . H (11.2%) are the
most dominant contacts. In the [Pd(3)2Cl2] complex, no significant interhalogen or π–π interactions
were detected. In this case, Cl . . . H (31.1%), H . . . H (16.7%), O . . . H (11.6%), and F . . . H (9.7%) are
the most dominant contacts.

Keywords: 1,2,3-triazole ligand; Pd(II)-complex; Hirshfeld; X-ray; intermolecular interactions

1. Introduction

The development of a nicely described functional ligand system is a hot topic in the
field of inorganic and organometallic chemistry. Indeed, 1,2,3-triazoles are among the impor-
tant heterocyclic functional ligands that are demonstrated to be interesting building blocks
in several organic molecules and inorganic compounds. Moreover, these heterocycles are
considered as subunit linkers for many target compounds having important pharmacologi-
cal effects, including xanthine oxidase (XO) and IDO inhibitors, anti-inflammatory, anti-HIV,
anticancer, antibacterial, antifungal, antitubercular, and antiallergic properties [1–5]. Due
to its high aromatic stability, this ring has good stability towards the hydrolysis and ox-
idation/reduction reactions in basic or acidic media [4]. Exploring the chemistry of this
scaffold has attracted much attention from researchers. Notably, the 1,2,3-triazole unit was
a key motif in several compounds that have been reported for many applications in drug
discovery, material science, and agrochemical and polymer chemistry [6,7].

The chemistry of palladium metal complexes has emerged for many years as a hot topic
of research for many organic/inorganic and medicinal chemists due to the wide importance
and applications in many fields, such as catalysis, material sciences, agrochemical, and drug
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discovery [8–18]. Palladium catalysis has engaged in many asymmetric/symmetric syn-
thetic transformations, such as carbon–carbon and carbon–nitrogen bond formation, which
is the most common technique for bond formation in process chemistry and medicinal
chemistry. Many reactions are well known to feature palladium metal as a catalyst, such as
Suzuki, Heck, Buchwald–Hartwig, and Stille cross-coupling reactions; Tsuji–Trost allylation
and Wacker transformation; and many processes, such as carbonylation, hydrogenation,
pericyclic reactions, and cycloisomerization [19–25].

In drug discovery research, recently, several palladium complexes exhibited high
efficacy against tumor cell lines and showed high correlation between the reactivity and
lipophilicity of the Pd-complexes. In such cases, the Pd-complexes are considered to be lead
organometallic compounds for cancer research due to significant anti-cancer activity with
fewer side effects compared to platinum complexes, such as cisplatin [26–30]. To design
organometallic-complex-derived Pd(II) and 1,2,3-triazole scaffold as a new material science
for different application disciplines is still a challenge. Therefore, the aim of this work was
to introduce a new Pd(II) complex based on the 1,2,3-tirazole ligand.

In light of this information, the synthesis, characterization, single-crystal diffraction
analysis, and Hirshfeld analyses for both the free triazole ligand and its Pd(II) complex
were investigated (Figure 1).

Crystals 2022, 12, 1335 2 of 13 
 

 

importance and applications in many fields, such as catalysis, material sciences, agro-

chemical, and drug discovery [8–18]. Palladium catalysis has engaged in many asymmet-

ric/symmetric synthetic transformations, such as carbon–carbon and carbon–nitrogen 

bond formation, which is the most common technique for bond formation in process 

chemistry and medicinal chemistry. Many reactions are well known to feature palladium 

metal as a catalyst, such as Suzuki, Heck, Buchwald–Hartwig, and Stille cross-coupling 

reactions; Tsuji–Trost allylation and Wacker transformation; and many processes, such as 

carbonylation, hydrogenation, pericyclic reactions, and cycloisomerization [19–25]. 

In drug discovery research, recently, several palladium complexes exhibited high ef-

ficacy against tumor cell lines and showed high correlation between the reactivity and 

lipophilicity of the Pd-complexes. In such cases, the Pd-complexes are considered to be 

lead organometallic compounds for cancer research due to significant anti-cancer activity 

with fewer side effects compared to platinum complexes, such as cisplatin [26–30]. To de-

sign organometallic-complex-derived Pd(II) and 1,2,3-triazole scaffold as a new material 

science for different application disciplines is still a challenge. Therefore, the aim of this 

work was to introduce a new Pd(II) complex based on the 1,2,3-tirazole ligand. 

In light of this information, the synthesis, characterization, single-crystal diffraction 

analysis, and Hirshfeld analyses for both the free triazole ligand and its Pd(II) complex 

were investigated (Figure 1). 

 

Figure 1. Triazole framework and its Pd(II) complex. 

2. Materials and Methods 

All experimental details are described in the Supplementary Materials. The synthesis 

of the triazole ligand and the Pd(II)-complex followed the reported literature method [31–

36]. 

2.1. Synthesis of Triazole Ligand 3 

To a stirring solution of 3-chloro-4-fluoroaniline 1 (4.466 g, 0.0308 mol) in dil. HCl (40 

mL, 3 M), a solution of sodium nitrite (2.34 g, 0.0339 mol, 25 mL, 1 M) treated at tempera-

ture < 10 °C was added. The progress of the reaction is confirmed by liberation of brown 

gases (1 h). When the brown gases crases, a solution of sodium azide (4.006 g, 0.0616 mol) 

is added to the stirred cold reaction mass. The formation of product is confirmed by TLC 
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2. Materials and Methods

All experimental details are described in the Supplementary Materials. The synthesis
of the triazole ligand and the Pd(II)-complex followed the reported literature method [31–36].

2.1. Synthesis of Triazole Ligand 3

To a stirring solution of 3-chloro-4-fluoroaniline 1 (4.466 g, 0.0308 mol) in dil. HCl
(40 mL, 3 M), a solution of sodium nitrite (2.34 g, 0.0339 mol, 25 mL, 1 M) treated at temper-
ature < 10 ◦C was added. The progress of the reaction is confirmed by liberation of brown
gases (1 h). When the brown gases crases, a solution of sodium azide (4.006 g, 0.0616 mol)
is added to the stirred cold reaction mass. The formation of product is confirmed by TLC
(1 h). The reaction mixture was extracted using diethyl ether. A brown viscous liquid
confirmed the product 1.

A solution of the appropriate azide 2 (10.0 mmol, 1.71 gm) and acetylacetone
(2.0 g, 20.0 mmol) in CHCl3 (20 mL) was treated by adding Et3N (2.02 g, 20.0 mmol)
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and DBU (1,8-Diazabicyclo[5.4.0]undec-7-ene) (0.76 g, 5.00 mmol). The reaction mixture
was stirred at room temperature for 1–2 h. The solvent was removed and water added, then
extracted with Et2O, dried with Na2SO4, evaporated, and the solid product was washed
with n-hexane to provide pure compound of triazole ligand 3 (Scheme 1). A suitable single
crystal for X-ray diffraction analysis was grown in Et2O/hexane.
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2.2. Synthesis of [Pd(3)2Cl2] Complexcomplex, 4

To a CH3OH solution of (126.5 mg, 0.5 mmol), 3 64.74 mg (0.25 mmol)
of [PdCl2(MeCN)2] was added and the resulting solution was stirred at room temper-
ature for 48 h. Subsequently, the reaction mixture was kept for slow evaporation to provide
the complex as yellow solid in a crystalline form, which is suitable for single-crystal X-ray
diffraction analysis. Yield = 0.16 g (83%). 1H NMR (400 MHz, CDCl3) δ 7.55 (d, J = 6.0 Hz,
1H, Ph), 7.34 (d, J = 6.6 Hz, 2H, Ph), 2.71 (s, 3H, CH3), 2.57 (s, 3H, CH3); 13C NMR (101 MHz,
CDCl3) δ 194.34, 194.28, 160.22, 157.70, 143.78, 137.63, 131.87, 128.84, 127.09, 124.58, 122.84,
117.10, 28.59, 10.73.

2.3. X-ray Structure Determinations

The technical procedures and the software [37–42] employed for solving the X-ray
structures of triazole ligand 3 and Pd(II)-complex 4 are provided in the Supplementary
Materials.

2.4. Hirshfeld Surface Analysis

Analysis of molecular packing was performed using Crystal Explorer 17.5 program [43].

3. Results and Discussion

The triazole ligand required for this study was synthesized according to the reported
method [31–36], and the spectral data were found matched with those reported in the liter-
ature. The triazole was mixed with the [PdCl2(MeCN)2] in MeOH at room temperature for
2 days to provide the desired Pd(II)-complex 4, as depicted in Scheme 1. Slow evaporation
of the metal complex solution afforded a suitable crystalline material, which assigned un-
ambiguously by single-crystal X-ray-diffraction analysis to confirm the chemical structure
of the target Pd(II)-complex 4.

3.1. Crystal Structure Description of Triazole Ligand 3

The structure of free ligand 3 is shown in Figure 2. Free ligand 3 crystallized in an
orthorhombic crystal system (Table 1). There is one molecule of 3 as an asymmetric unit, and
z = 4. The unit cell volume is 1149.53(3) Å3, with crystal parameters of a = 12.99270(10) Å,
b = 13.1421(2) Å, and c = 6.73220(10) Å. The structure comprised two planar rings, which
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are the phenyl and triazole moieties connected by a C6–N1 bond. The two rings are not
coplanar with each other, where the twist angle between the two moieties is 64.15◦.
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Table 1. Crystal data for triazole ligand 3 and Pd(II)-complex 4.

3 4

CCDC 2203623 2203624
empirical formula C11H9ClFN3O C22H18Cl4F2N6O2Pd

fw 253.66 684.62
temp (K) 120(2) 170(2)

λ(Å) 0.71073 0.71073
cryst syst Orthorhombic Monoclinic

space group Pna21 P21/c
a (Å) 12.99270(10) 10.7712(2)
b (Å) 13.1421(2) 6.8500(2)
c (Å) 6.73220(10) 18.2136(6)

β (deg) 90 98.851(2)
V (Å3) 1149.53(3) 1327.85(6)

Z 4 2
ρcalc (Mg/m3) 1.466 1.712

µ (Mo Kα) (mm−1) 0.332 1.148
No. reflns. 14279 11866

Unique reflns. 2768 3120
Completeness to θ = 25.242◦ 99.9% 98.3%

GOOF (F2) 1.043 1.086
Rint 0.0258 0.0263

R1
a (I ≥ 2σ) 0.0288 0.0236

wR2
b (I ≥ 2σ) 0.0752 0.0561

a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo
2 − Fc

2)2]/Σ[w(Fo
2)2]}1/2.

The molecules of triazole ligand 3 are connected with each other by weak C1-H1...N3
and C4-H4...O1 interactions (Figure 3A). The hydrogen bond parameters are listed in
Table 3, while a view of molecular packing for triazole ligand 3 is shown in Figure 3B. In
addition, the packing is controlled by the interhalogen and π–π stacking interactions shown
in Figure 2C. Cl1...F1, C3...C9, and C7...N2 are the shortest interactions. The respective
atom...atoms distances are 3.128, 3.379, and 3.197 Å.
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Table 2. Selected bond lengths [Å] and angles [◦] for triazole ligand 3.

Atoms Distance Atoms Distance

Cl(1)-C(2) 1.719(2) N(1)-N(2) 1.367(2)

F(1)-C(3) 1.356(2) N(1)-C(6) 1.435(3)

O(1)-C(10) 1.215(3) N(2)-N(3) 1.301(3)

N(1)-C(7) 1.349(3) N(3)-C(9) 1.364(3)

Atoms Angle Atoms Angle

C(7)-N(1)-N(2) 111.55(16) N(3)-N(2)-N(1) 106.74(16)

C(7)-N(1)-C(6) 129.53(16) N(2)-N(3)-C(9) 109.37(18)

N(2)-N(1)-C(6) 118.91(16) C(6)-C(1)-C(2) 118.23(19)
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Figure 3. Possible contacts (A) and molecular packing view via C–H . . . N and C–H . . . O (B) and
interhalogen/π–π interactions (C) of triazole ligand 3.

Table 3. Hydrogen bonds for triazole ligand 3 and its Pd(II) complex 4 [Å and ◦].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA) Symm. Codes

3

C1-H1...N3 0.95 2.47 3.402(3) 168 1 − x, 1 − y, 1/2 + z

C4-H4...O1 0.95 2.28 3.149(3) 151 −1/2 + x, 1/2 − y, −1 + z

Pd(II) complex 4

C5-H5A...Cl1 0.98 2.79 3.7337(19) 163 x, 1/2 − y, −1/2 + z

C7-H7...Cl1 0.95 2.77 3.6827(19) 161 x, 1/2 − y, −1/2 + z

C10-H10...O1 0.95 2.37 3.294(2) 163 − 1 + x, y, z
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3.2. Crystal Structure Description of [Pd(3)2Cl2] Complex 4

The X-ray structure of the corresponding Pd(II) complex 4 of triazole ligand 3 is shown
in Figure 4. It crystallized in a lower symmetry monoclinic crystal system, and P21/c is
the space group. There are two [Pd(3)2Cl2] molecules per unit cell, and the asymmetric
unit comprised half of this formula. The unit cell volume is 1327.85(6) Å3, with crystal
parameters of a = 10.7712(2) Å, b = 6.8500(2) Å, and c = 18.2136(6) Å, while β = 98.851(2)◦.
A list of some bond distances and angles is provided in Table 4. The structure comprised
two trans triazole ligands coordinated to the Pd(II) ion via one of the nitrogen atoms of
the triazole moiety. In addition, the Pd(II) is further coordinated with two trans chloride
groups. Because of the presence of an inversion center located at the Pd(II), each of the
trans bonds is equidistant (Table 4). The structure of the coordinated ligand showed less
twist around the C–N bond compared to free triazole ligand 3. In the former, the twist
angle between the two moieties is 44.96◦, indicating that the two rings are also not coplanar
but to a lesser extent compared to free triazole ligand 3.
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Figure 4. Structure of [Pd(3)2Cl2] complex 4. Symmetry code: #1 − x + 1, −y, −z + 1.

Table 4. Selected bond lengths [Å] and angles [◦] for [Pd(3)2Cl2] complex 4.

Atoms Distance Atoms Distance

Pd(1)-N(1) 2.0010(14) Pd(1)-Cl(1) 2.2837(5)

Atoms Angle Bond Angle

N(1)#1-Pd(1)-N(1) 180 N(1)-Pd(1)-Cl(1)#1 89.77(4)

N(1)-Pd(1)-Cl(1) 90.23(4)
Symmetry code: #1 − x + 1, −y, −z + 1.

The supramolecular structure of [Pd(3)2Cl2] is controlled by weak C5-H5A . . . Cl1,
C7-H7...Cl1, and C10-H10...O1 interactions. The hydrogen–acceptor distances are 2.79,
2.77, and 2.37 Å, respectively, while the donor–acceptor distances are 3.7337(19), 3.6827(19),
and 3.294(2) Å, respectively (Table 3). The packing view of the crystal structure of the
[Pd(3)2Cl2] is shown in Figure 5.
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3.3. Hirshfeld Surface Analysis

Analysis of molecular packing is further investigated using Hirshfeld topology cal-
culations in order to detect all possible intermolecular contacts that control the molecular
packing in free triazole ligand 3 and its Pd(II) complex 4. For the free ligand, the different
Hirshfeld surfaces are presented in Figure 6.
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Figure 6. Hirshfeld surfaces for free triazole ligand 3; A (Cl . . . F), B (O . . . H), C (N . . . H),
D (C . . . N), and E (C . . . C).

As can be clearly seen from the dnorm map, there are many red spots. These red regions
are indicative of the presence of short contacts having interaction distances shorter than
the vdWs radii sum of interacting atoms, which are Cl . . . F, O . . . H, N . . . H, C . . . N,
and C . . . C contacts. Cl1 . . . F1 (3.128 Å), O1 . . . H4 (2.167 Å), N3 . . . H1 (2.336 Å),
C7 . . . N2 (3.197 Å), and C3 . . . C9 (3.379 Å) are the shortest contacts, respectively. In
addition to the conventional O . . . H and N . . . H hydrogen bonding interactions, the
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short Cl . . . F contacts confirmed the presence of interhalogen interactions among the
neighboring molecular units. Moreover, the short C . . . C and C . . . N contacts are good
indicators of the π–π interactions between the stacked triazole moieties. The sum of the
C . . . C and C . . . N contacts is 6.7%, which are related to the π–π stacking interactions.

The percentages of all possible contacts occurring in the crystal structure of the free
ligand are presented in Figure 6. The dominant contacts are H . . . H (23.5%), Cl . . . H
(14.4%), N . . . H (14.3%), and O . . . H (11.2%) interactions. The interhalogen interactions
contributed 4.5% from the whole contacts, where there are two types of this interaction.
The significantly short Cl . . . F contacts contribute 3.5% from the whole interactions and
the relatively long Cl . . . Cl contacts (1.0%). The latter appeared in the dnorm as a blue color,
indicating long-distance interaction (Figure 7).
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Figure 7. Percentages of intermolecular interactions in 3.

In addition, the decomposed fingerprint plots for all short contacts are presented
in Figure 8. The area of the fingerprint plot represents the frequency of each contact,
which provides the percentages of each contact (Figure 7). In addition, the pattern of the
fingerprint plot provided an idea about the strength of the corresponding interaction. Sharp
spikes reveal short distance and strong interaction. The Cl . . . F, O . . . H, N . . . H, C . . . N,
and C . . . C interactions clearly showed these features.
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For Pd(II) complex 4, the coordination between the Pd(II) and the organic ligand signif-
icantly affects the intermolecular interactions. The first observation is the disappearance of
the interhalogen interactions where no significant Cl...F or Cl...Cl interactions were detected.
Only a small amount of long distance Cl...Cl (2.7%) interactions were detected with contact
distances of 3.947 Å (Cl1...Cl2). This interaction is significantly longer than twice the vdWs
radii of chlorine atom. Additionally, there are no short C . . . C or C . . . N contacts detected
in the Pd(II) complex. Their percentages are 6.0 and 0.0, respectively, and no red regions
are related to these interactions in the dnorm map. The shortest C...C contact distances are
3.481 Å (C11 . . . C9) and 3.433 Å (C10 . . . C9). A summary of all the observed contacts and
their percentages is shown in Figure 9.
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Figure 9. Intermolecular contacts and their percentages in Pd(II) complex 4.

The most dominant contacts are Cl...H (31.1%), H...H (16.7%), O...H (11.6%), and F...H
(9.7%) interactions. Other less contributing contacts were detected, and their percentages
are depicted in Figure 8. Among these interactions, Cl...H, O...H, and Cl...C interactions are
the most significant; only these contacts appeared as red regions in the dnorm (Figure 10).
For the Cl...H interactions, Cl1 . . . H7 (2.645 Å), Cl1 . . . H5A (2.688 Å), and Cl1 . . . H5B
(2.799 Å) are the shortest. Unlike the free ligand, all these interactions are related to the
coordinated chloride ion, while no significant Cl...H interactions related to the chlorine
atom attached to the phenyl ring were detected. Moreover, O1 . . . H10 (2.246 Å) and
Cl1 . . . C2 (3.29 Å) have significantly short contact distances. All these interactions are
clearly observed from the corresponding fingerprint plot as sharp spikes, which confirm
their significance (Figure 11).
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4. Conclusions

Two single crystals of the free triazole ligand named 1-(1-(3-chloro-4-fluorophenyl)-
5-methyl-1H-1,2,3-triazol-4-yl)ethan-1-one (3) and its Pd(II) complex [Pd(3)2Cl2] were
prepared and their single-crystal structures were presented. The [Pd(3)2Cl2] complex com-
prised a tetracoordinated Pd(II) ion with 3 and Cl¯, with both acting as monodentate
ligands. There is a center of symmetry located at the Pd(II), so the trans bonds are equidis-
tant. The molecular packing of free triazole ligand 3 is controlled by short Cl . . . F, O . . . H,
N . . . H, C . . . N, and C . . . C interactions. The presence of short Cl . . . F contacts indicates
the presence of interhalogen interactions, while the short C . . . C and C . . . N contacts
are good indicators of π–π interactions. In this case, the dominant contacts are H . . . H
(23.5%), Cl . . . H (14.4%), N . . . H (14.3%), and O . . . H (11.2%) interactions. In contrast,
the packing of [Pd(3)2Cl2] showed no significant interhalogen or π–π interactions. In this
case, the most dominant contacts are Cl...H (31.1%), H...H (16.7%), O...H (11.6%), and F...H
(9.7%) interactions, while Cl...H, O...H, and Cl . . . C interactions are the most significant.

Supplementary Materials: The following supporting information can be downloaded at: https:
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in this study and also the X-ray structure determinations technical protocol.
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