Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (99)

Search Parameters:
Keywords = sustainable rural electrification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Viewed by 413
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

21 pages, 1616 KiB  
Article
Optimization Design and Operation Analysis of Integrated Energy System for Rural Active Net-Zero Energy Buildings
by Jingshuai Pang, Yi Guo, Ruiqi Wang, Hongyin Chen, Zheng Wu, Manzheng Zhang and Yuanfu Li
Energies 2025, 18(15), 3924; https://doi.org/10.3390/en18153924 - 23 Jul 2025
Viewed by 218
Abstract
To address energy shortages and achieve carbon peaking/neutrality, this study develops a distributed renewable-based integrated energy system (IES) for rural active zero-energy buildings (ZEBs). Energy consumption patterns of typical rural houses are analyzed, guiding the design of a resource-tailored IES that balances economy [...] Read more.
To address energy shortages and achieve carbon peaking/neutrality, this study develops a distributed renewable-based integrated energy system (IES) for rural active zero-energy buildings (ZEBs). Energy consumption patterns of typical rural houses are analyzed, guiding the design of a resource-tailored IES that balances economy and sustainability. Key equipment capacities are optimized to achieve net-zero/zero energy consumption targets. For typical daily cooling/heating/power loads, equipment output is scheduled using a dual-objective optimization model minimizing operating costs and CO2 emissions. Results demonstrate that: (1) Net-zero-energy IES outperforms separated production (SP) and full electrification systems (FES) in economic-environmental benefits; (2) Zero-energy IES significantly reduces rural building carbon emissions. The proposed system offers substantial practical value for China’s rural energy transition. Full article
Show Figures

Figure 1

18 pages, 531 KiB  
Article
Advancing Rural Electrification in Ghana: Sustainable Solutions and Emerging Trends in Solar Energy Utilization
by Jones Lewis Arthur, Michael Gameli Dziwornu, Paweł Czapliński, Tomasz Rachwał and Hope Kwame Fiagbor
Energies 2025, 18(14), 3825; https://doi.org/10.3390/en18143825 - 18 Jul 2025
Viewed by 406
Abstract
This study examines the integration and sustainability of solar energy technologies as a tool for rural electrification in Ghana, using the Lofetsume community as a case study. Persistent electricity access deficits in rural areas, coupled with unreliable grid systems and high energy costs, [...] Read more.
This study examines the integration and sustainability of solar energy technologies as a tool for rural electrification in Ghana, using the Lofetsume community as a case study. Persistent electricity access deficits in rural areas, coupled with unreliable grid systems and high energy costs, underscore the need for alternative energy solutions. Through semi-structured interviews and surveys, the study explores community perspectives and expert views on the viability of solar energy in rural Ghana. Findings reveal strong grassroots support for solar energy due to its reliability and environmental benefits, despite barriers such as high upfront installation costs and maintenance challenges. The study recommends multi-stakeholder partnerships, innovative financing models, and capacity-building initiatives to enhance solar energy adoption. By prioritizing solar energy technologies, the government, private sector, and local communities can collaborate to develop sustainable and affordable electrification solutions, ultimately improving living standards in remote areas and contributing to Ghana’s broader energy sustainability goals. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

54 pages, 8551 KiB  
Review
Photovoltaic Technology and Rural Landscapes: A Systematic Literature Review on Challenges and Sustainable Integration
by Stefano Bigiotti, Mariangela Ludovica Santarsiero, Carlo Costantino and Alvaro Marucci
Energies 2025, 18(8), 2095; https://doi.org/10.3390/en18082095 - 18 Apr 2025
Cited by 2 | Viewed by 593
Abstract
Energy supply through photovoltaic technology represents one of the most widely applied solutions in achieving energy transition goals. However, its expansion in rural contexts raises concerns due to the unique characteristics of the natural environment and the intrinsic landscape qualities of these areas. [...] Read more.
Energy supply through photovoltaic technology represents one of the most widely applied solutions in achieving energy transition goals. However, its expansion in rural contexts raises concerns due to the unique characteristics of the natural environment and the intrinsic landscape qualities of these areas. This systematic literature review examines the relationship between photovoltaic technology and the agricultural landscape, categorizing the selected studies into the following three macro-groups: the integration of photovoltaics in protected buildings and landscapes, the electrification of remote agricultural areas, and agrivoltaics as a compromise between production needs and landscape compatibility. Despite the extensive literature on the energy transition, systematic analyses of the landscape impacts of rural photovoltaics remain limited. This review addresses this gap by focusing on three key application areas marked by the tension between innovation and conservation. Through a systematic analysis conducted following the PRISMA guidelines, selecting 89 scientific publications from over 1200 evaluated sources, this review highlights the growing scientific interest in the topic and the heterogeneity of related research areas. The multidisciplinary nature of the discussion underscores the need to develop additional solutions that are more compatible with the environmental values of agricultural heritage, facilitating a more integrated and sustainable deployment of photovoltaics in high-value rural landscapes. Full article
(This article belongs to the Special Issue Sustainable Building Energy and Environment: 2nd Edition)
Show Figures

Figure 1

40 pages, 3271 KiB  
Article
Efficiency Evaluation of a Photovoltaic-Powered Water Treatment System with Natural Sedimentation Pretreatment for Arsenic Removal in High Water Vulnerability Areas: Application in La Yarada Los Palos District, Tacna, Peru
by Luis Johnson Paúl Mori Sosa
Sustainability 2025, 17(7), 2987; https://doi.org/10.3390/su17072987 - 27 Mar 2025
Viewed by 737
Abstract
Arsenic contamination poses a severe health risk in regions with high water vulnerability and limited treatment infrastructure. This study evaluates a photovoltaic-powered water treatment system for arsenic removal in La Yarada Los Palos District, Tacna, Peru, where arsenic concentrations reached up to 0.0417 [...] Read more.
Arsenic contamination poses a severe health risk in regions with high water vulnerability and limited treatment infrastructure. This study evaluates a photovoltaic-powered water treatment system for arsenic removal in La Yarada Los Palos District, Tacna, Peru, where arsenic concentrations reached up to 0.0417 mg/L, significantly surpassing the World Health Organization (WHO) limit of 10 µg/L (0.01 mg/L) for drinking water. The system integrates a natural sedimentation pretreatment stage in a geomembrane-lined reservoir, followed by oxidation with sodium hypochlorite, coagulation, and adsorption. Arsenic removal efficiencies ranged from 99.72% to 99.85%, reducing residual concentrations below WHO guidelines. Pretreatment significantly improved performance, reducing turbidity by up to 66.67% and TSS by up to 70.37%, optimizing subsequent treatment stages. Operationally, pretreatment decreased cleaning frequency from six to four cleanings per month, while backwashing energy consumption dropped by 33% (from 45.72 kWh to 30.48 kWh). The photovoltaic system leveraged the region’s high solar radiation, achieving an average daily generation of 20.31 kWh and an energy surplus of 33.08%. The system’s performance was evaluated within the context of existing arsenic removal technologies, demonstrating that the integration of natural sedimentation and renewable energy constitutes a viable operational alternative. Given the regulatory framework in Peru, where arsenic limits align with WHO standards, conventional water treatment systems are normatively and technically unfeasible under national legislation. Furthermore, La Yarada Los Palos District faces challenges due to its limited infrastructure for conventional electrification via power grid, as identified in national reports on rural electrification and gaps in access to basic services. Beyond its performance in the study area, the system’s modular design allows adaptation to diverse water sources with varying arsenic concentrations, turbidity levels, and other physicochemical characteristics. In remote regions with limited access to the power grid, such as the study site, photovoltaic energy provides a self-sustaining and replicable alternative, particularly in arid and semi-arid areas with high solar radiation. These conditions are not exclusive to Latin America but are also prevalent in remote regions of Africa, the Middle East, Asia, and Oceania, where groundwater arsenic contamination is a significant issue and renewable energy availability can enhance water treatment sustainability. These findings underscore the potential of using sustainable energy solutions to address water contamination challenges in remote areas. The modular and scalable design of this system enables its replication in regions with adverse hydrogeological conditions, integrating renewable energy and pretreatment strategies to enhance water treatment performance. The framework presented in this study offers a replicable and efficient approach for implementing eco-friendly water treatment systems in regions with similar environmental and resource constraints. Full article
Show Figures

Figure 1

35 pages, 5368 KiB  
Article
Systematic Optimize and Cost-Effective Design of a 100% Renewable Microgrid Hybrid System for Sustainable Rural Electrification in Khlong Ruea, Thailand
by Montri Ngao-det, Jutturit Thongpron, Anon Namin, Nopporn Patcharaprakiti, Worrajak Muangjai and Teerasak Somsak
Energies 2025, 18(7), 1628; https://doi.org/10.3390/en18071628 - 24 Mar 2025
Cited by 1 | Viewed by 1065
Abstract
This study presents a systematic approach to designing and optimizing a 100% renewable hybrid microgrid system for sustainable rural electrification in Khlong Ruea, Thailand, using HOMER Pro software (Version 3.15.3). The proposed system integrates photovoltaic (PV) panels (20 kW), pico hydro (9.42 kW), [...] Read more.
This study presents a systematic approach to designing and optimizing a 100% renewable hybrid microgrid system for sustainable rural electrification in Khlong Ruea, Thailand, using HOMER Pro software (Version 3.15.3). The proposed system integrates photovoltaic (PV) panels (20 kW), pico hydro (9.42 kW), and lithium-ion battery storage (264 kWh) to provide a reliable, cost-effective, and environmentally sustainable energy solution for a remote village of 306 residents. The methodology encompasses site-specific resource assessment (solar irradiance, hydro flow), load demand analysis, and techno-economic optimization, minimizing the net present cost (NPC) and cost of energy (COE) while achieving zero emissions. Simulation results indicate the optimal configuration (S1) achieves an NPC of USD 362,687 and COE of USD 0.19/kWh, with a 100% renewable fraction, outperforming the current diesel–hydro system (NPC USD 3,400,000, COE USD 1.85/kWh, 61.4% renewable). Sensitivity analysis confirms robustness against load increases (1–5%), though battery capacity and costs rise proportionally. Compared to regional microgrids, the proposed system excels in terms of sustainability and scalability, leveraging local resources effectively. The lifecycle assessment highlights the battery’s embodied emissions (13,200–39,600 kg CO2e), underscoring the need for recycling to enhance long-term sustainability. Aligned with Thailand’s AEDP 2018–2037 and net-zero goals, this model offers a replicable framework for rural electrification in Southeast Asia. Stakeholder engagement, including community input and EGAT funding, ensures practical implementation. The study demonstrates that fully renewable microgrids are technically feasible and economically viable, providing a blueprint for sustainable energy transitions globally. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

20 pages, 2203 KiB  
Article
Optimizing Solar-Integrated Microgrid Design for Sustainable Rural Electrification: Insights from the LEOPARD Project
by Ahmed Rachid, Talha Batuhan Korkut, Jean-Sebastien Cardot, Cheikh M. F. Kébé, Ababacar Ndiaye, Léonide Michael Sinsin and François Xavier Fifatin
Solar 2025, 5(1), 9; https://doi.org/10.3390/solar5010009 - 7 Mar 2025
Viewed by 1288
Abstract
This paper presents findings from the LEOPARD project, part of the LEAP-RE program, a joint European Union (EU) and African Union initiative to advance renewable energy solutions. The study employs a simulation-based approach to optimize solar-integrated microgrid configurations for rural electrification. The project [...] Read more.
This paper presents findings from the LEOPARD project, part of the LEAP-RE program, a joint European Union (EU) and African Union initiative to advance renewable energy solutions. The study employs a simulation-based approach to optimize solar-integrated microgrid configurations for rural electrification. The project deployed a solar-integrated pilot microgrid at the Songhai agroecological center in Benin to address key challenges, including load profile estimation, energy balancing, and diesel dependency reduction. A hybrid methodology integrating predictive modeling, real-time solar and weather data analysis, and performance simulations was employed, leading to a 65% reduction in diesel reliance and an LCOE of EUR 0.47/kWh. Quality control measures, including compliance with IEC 61215 and IEC 62485-2 standards, ensured system reliability under extreme conditions. Over 150 days, the system consistently supplied energy, preventing 10.16 tons of CO2 emissions. Beyond the Benin pilot, the project conducted feasibility assessments in Senegal to evaluate microgrid replicability across different socio-economic and environmental conditions. These analyses highlight the scalability potential and the economic viability of expanding solar microgrids in rural areas. Additionally, this research explores innovative business models and real-time diagnostics to enhance microgrid sustainability. By providing a replicable framework, it promotes long-term energy access and regional adaptability. With a focus on community involvement and capacity building, this study supports efforts to reduce energy poverty, strengthen European–African collaboration, and advance the global clean energy agenda. Full article
Show Figures

Figure 1

26 pages, 19741 KiB  
Article
Remote Sensing Identification and Analysis of Global Building Electrification (2012–2023)
by Shengya Ou, Mingquan Wu, Zheng Niu, Fang Chen, Jie Liu, Meng Wang and Dinghui Tian
Remote Sens. 2025, 17(5), 777; https://doi.org/10.3390/rs17050777 - 23 Feb 2025
Viewed by 821
Abstract
The accurate collection of spatially distributed electrification data is considered of great importance for tracking progress toward target 7.1 of the sustainable development goals (SDGs) and the formulation of policy decisions on electricity access issues. However, the existing datasets face severe limitations in [...] Read more.
The accurate collection of spatially distributed electrification data is considered of great importance for tracking progress toward target 7.1 of the sustainable development goals (SDGs) and the formulation of policy decisions on electricity access issues. However, the existing datasets face severe limitations in terms of temporal discontinuity and restricted threshold selection. To effectively address these issues, in this work, an improved remote sensing method was proposed to monitor global building electrification. By integrating global land cover data, built-up area data, and annual NPP/VIIRS nighttime light images, a regional threshold method was used to identify electrified and unelectrified areas yearly, generating a global building electrification dataset for 2012–2023. Based on our analysis, we found the following: (1) The five assessment metrics of the product—Accuracy (0.9856), Precision (0.9734), Recall (0.9984), F1-score (0.9858), and Matthews Correlation Coefficient (0.9715)—all exceed 0.9, demonstrating that our method achieves high reliability in identifying electrified buildings. (2) In 2023, 91.88% of global building areas were electrified, with the unelectrified buildings being predominantly located in rural regions of developing countries. (3) Between 2012 and 2023, the global electrified building area increased by 2.4199 million km2, with rural areas experiencing a faster growth rate than town areas. The annual reduction rate of unelectrified building area was 0.62%. However, to achieve universal electricity access by 2030, this rate must nearly double. (4) External factors such as the COVID-19 pandemic, extreme weather events, and armed conflicts significantly affect global electrification progress, with developing countries being particularly vulnerable. In our work, remote sensing methodologies and datasets for monitoring electrification trends were refined, and a detailed spatial representation of unelectrified areas worldwide was provided. Full article
(This article belongs to the Special Issue Big Earth Data in Support of the Sustainable Development Goals)
Show Figures

Figure 1

24 pages, 3627 KiB  
Article
Strategic Resource Planning for Sustainable Biogas Integration in Hybrid Renewable Energy Systems
by Pooriya Motevakel, Carlos Roldán-Blay, Carlos Roldán-Porta, Guillermo Escrivá-Escrivá and Daniel Dasí-Crespo
Appl. Sci. 2025, 15(2), 642; https://doi.org/10.3390/app15020642 - 10 Jan 2025
Cited by 2 | Viewed by 1624
Abstract
In response to the growing demand for sustainable energy and the environmental impacts of fossil fuels, renewable sources like biomass have become crucial, especially in regions rich in agricultural and animal waste. This study focuses on a real-life project in Aras de los [...] Read more.
In response to the growing demand for sustainable energy and the environmental impacts of fossil fuels, renewable sources like biomass have become crucial, especially in regions rich in agricultural and animal waste. This study focuses on a real-life project in Aras de los Olmos, Spain, where solar, wind, and biogas from biomass serve as primary energy sources, supplemented by a hydro-based storage system to stabilize supply. Central to the research is optimizing biomass inflow to the biogas reactor—the primary controllable variable—to effectively manage the supply chain, maximize energy output, and minimize logistical costs. The study addresses practical challenges by utilizing real data on demand, truck capacities, and costs and employing robust optimization tools like Gurobi. It demonstrates how optimized biomass flow can secure energy needs during high demand or when other renewables are unavailable. Integrating technical and economic aspects, it offers a comprehensive and practical model for sustainable and economically viable energy production in rural communities. It provides a foundational framework for future renewable energy and optimized energy storage system studies. Full article
(This article belongs to the Special Issue Advances in the Sustainability and Energy Efficiency of Buildings)
Show Figures

Figure 1

22 pages, 2954 KiB  
Article
Electrification Planning for Off-Grid Communities in Sub-Saharan Africa: Advancing Energy Access
by Bertha Lwakatare, Priyanka Vyavahare, Kedar Mehta and Wilfried Zörner
Energies 2024, 17(23), 5994; https://doi.org/10.3390/en17235994 - 28 Nov 2024
Cited by 4 | Viewed by 1895
Abstract
Sub-Saharan Africa, especially its rural areas, faces significant challenges in achieving universal electrification despite its abundant renewable energy resources. The region has the highest population without access to electricity, largely due to economic, infrastructural, and geographical barriers. Energy poverty is a critical issue [...] Read more.
Sub-Saharan Africa, especially its rural areas, faces significant challenges in achieving universal electrification despite its abundant renewable energy resources. The region has the highest population without access to electricity, largely due to economic, infrastructural, and geographical barriers. Energy poverty is a critical issue that hinders sustainable development and exacerbates inequalities. Namibia’s sustainable energy policy aligns with the global Sustainable Development Goals (SDGs), particularly SDG 7, which aims to provide affordable and reliable modern energy access for all. The policy emphasizes mini-grids and decentralized power systems as key strategies for rural electrification. However, despite increased deployment of mini-grids, these solutions often struggle with long-term sustainability. This research explores cost-effective electrification strategies through scenario-based modeling to reduce energy poverty and expand energy access in Namibia’s rural communities, focusing on the existing mini-grids in Tsumkwe and Gam. Using a comprehensive methodology that incorporates HOMER Pro for mini-grid capacity expansion and MS Excel for evaluating main-grid extensions, this study aims to identify the most feasible and economical electrification solutions. The analysis compares electricity supply, total net present cost, and the levelized cost of electricity across these systems. The findings will offer insights into addressing energy poverty in Namibia and provide recommendations for sustainable and scalable rural electrification across Sub-Saharan Africa. Full article
Show Figures

Figure 1

17 pages, 2367 KiB  
Systematic Review
Sustainability of Rural Electrification Projects in Developing Countries: A Systematic Literature Review
by Carlos Cuenca-Enrique, Laura del-Río-Carazo, Emiliano Acquila-Natale and Santiago Iglesias-Pradas
Energies 2024, 17(23), 5925; https://doi.org/10.3390/en17235925 - 26 Nov 2024
Cited by 1 | Viewed by 1551
Abstract
This study provides a review of the sustainability of rural electrification projects in developing countries to identify drivers of the long-term success of these initiatives. Unlike previous studies that often separate sustainability into social, economic, and environmental dimensions, this research adopts a comprehensive [...] Read more.
This study provides a review of the sustainability of rural electrification projects in developing countries to identify drivers of the long-term success of these initiatives. Unlike previous studies that often separate sustainability into social, economic, and environmental dimensions, this research adopts a comprehensive approach, acknowledging the interconnectedness of these aspects. Twenty-one sustainability drivers were identified. Based on these, a framework was proposed to organize them across project phases and key activities, supporting sustainable project planning and execution. This framework enables stakeholders to integrate sustainability considerations into the design and management of rural electrification projects, facilitating strategic action across diverse areas. The findings underscore well-known sustainability drivers such as renewable energy adoption while highlighting less-researched aspects, including project monitoring and waste management. Further studies should explore these under-researched areas and examine the potential of digitalization to enhance project sustainability, particularly as rural connectivity improves in developing countries. This approach can provide insights into optimizing rural electrification projects for long-term success and resilience. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

40 pages, 5423 KiB  
Article
The Integration of Economic, Environmental, and Social Aspects by Developing and Demonstrating an Analytical Framework That Combines Methods and Indicators Using Mavumira Village as a Case Study
by Emília Inês Come Zebra, Henny J. van der Windt, Jorge Olívio Penicela Nhambiu, Nicolò Golinucci, Marta Gandiglio, Isabella Bianco and André P. C. Faaij
Sustainability 2024, 16(22), 9829; https://doi.org/10.3390/su16229829 - 11 Nov 2024
Cited by 2 | Viewed by 1510
Abstract
Access to electricity is a crucial factor in boosting the economic, environmental, and social development of developing nations. This study presents a framework that combines and integrates indicators and methods to determine the most sustainable solution for off-grid electrification, focusing on the Mavumira [...] Read more.
Access to electricity is a crucial factor in boosting the economic, environmental, and social development of developing nations. This study presents a framework that combines and integrates indicators and methods to determine the most sustainable solution for off-grid electrification, focusing on the Mavumira village in Mozambique. The framework covers various methods including input–output, life cycle assessment based on SimaPro, and HOMER. Data for the analysis were obtained from the literature, the HOMER database, and the ecoinvent database. Our results show that renewables are the most sustainable solutions compared to diesel-only options as they can lower the cost of electricity by 20%, create approximately 26 more local jobs, reduce about 77% of greenhouse gas emissions caused by burning fossil fuels, and have higher values of HDI than diesel-only options. Using the MCDA (TOPSIS method), we found that the future renewable scenario ranked highest with a closeness value of one, while the diesel-only option ranked third and fourth on a ranking scale from 1 to 4. This study concludes with future research directions for applying the framework to other case studies using different renewable technologies like wind, hydropower, and biomass in villages with similar characteristics to Mavumira. The novelty of this study lies in applying various methods and indicators to analyze the sustainability of an implemented project for the current and future scenarios. Additionally, the framework presented in this study would assist policymakers in selecting the best energy alternatives for rural electrification. Full article
Show Figures

Figure 1

19 pages, 3284 KiB  
Article
Optimizing Solar Potential Analysis in Cuba: A Methodology for High-Resolution Regional Mapping
by Javier Domínguez, Carlo Bellini, Ana María Martín and Luis F. Zarzalejo
Sustainability 2024, 16(18), 7899; https://doi.org/10.3390/su16187899 - 10 Sep 2024
Cited by 1 | Viewed by 1993
Abstract
The development of solar energy at a regional scale necessitates a thorough understanding of available resources. Cuba, facing prolonged economic, environmental, and energy crises, urgently needs to enhance its sustainability through solar energy. Although solar resource mapping is widespread, Cuba lacks extensive field [...] Read more.
The development of solar energy at a regional scale necessitates a thorough understanding of available resources. Cuba, facing prolonged economic, environmental, and energy crises, urgently needs to enhance its sustainability through solar energy. Although solar resource mapping is widespread, Cuba lacks extensive field measurements, often relying on models that may not be ideally suited for large regions, like Matanzas province. Spanning over 12,000 km² with nearly 150 km between its northern and southern extremes, Matanzas presents challenges for high-resolution solar mapping. This study introduces a methodology that integrates various methods and databases to achieve the maximum resolution in the resulting solar map. This approach is designed for large areas, where conventional high-resolution models fall short. By optimizing calculation times and parameterizing the entire surface latitudinally, a high-resolution solar resource map for Matanzas has been developed. This map significantly enhances the understanding of solar resources in Cuba and enables the proposal of new methodologies for analyzing solar potential in similarly large regions. Full article
Show Figures

Figure 1

37 pages, 12671 KiB  
Article
IntiGIS-Local: A Geospatial Approach to Assessing Rural Electrification Alternatives for Sustainable Socio-Economic Development in Isolated Communities—A Case Study of Guasasa, Cuba
by Javier Domínguez, Carlo Bellini, Luis Arribas, Julio Amador, Mirelys Torres-Pérez and Ana M. Martín
Energies 2024, 17(15), 3835; https://doi.org/10.3390/en17153835 - 3 Aug 2024
Cited by 4 | Viewed by 1789
Abstract
Rural electrification is a crucial step for the socio-economic development of isolated communities. Decentralized power generation, typically more favorable for renewable energies, requires an accurate analysis of the different electrification options, whose convenience depends on multiple factors. The application of Geographical Information Systems [...] Read more.
Rural electrification is a crucial step for the socio-economic development of isolated communities. Decentralized power generation, typically more favorable for renewable energies, requires an accurate analysis of the different electrification options, whose convenience depends on multiple factors. The application of Geographical Information Systems (GISs) to energy planning allows the assessment at a local level, considering the variability and demand distribution of spatial resources. This work introduces IntiGIS-local, a GIS-based model implemented in the ArcGIS environment, designed to calculate the levelized energy cost (LEC) for different electrification options. The model allows the comparison between three power generation alternatives: solar system, diesel generator set and solar–diesel hybrid system. Configurations are adjustable through input variables, with a special focus on the confrontation between individual systems and microgrids. The objective is to provide an adequate groundwork for developing a decision-making tool to assess diverse rural electrification options in future studies. The model IntiGIS-local is tested in the case study of the Guasasa community (Cuba). Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

18 pages, 3924 KiB  
Article
The Distribution of the Economic Impacts of Sustainable Regional Transport Policies
by Rita Prior Filipe, Andrew Heath and Nick McCullen
Sustainability 2024, 16(13), 5819; https://doi.org/10.3390/su16135819 - 8 Jul 2024
Viewed by 1661
Abstract
In response to current environmental, social and accessibility challenges in the mobility sector, this research focuses on promoting the development of integrated sustainable regional transport policies, supported by a thorough analysis of their distributed economic impacts. This is fulfilled with the development of [...] Read more.
In response to current environmental, social and accessibility challenges in the mobility sector, this research focuses on promoting the development of integrated sustainable regional transport policies, supported by a thorough analysis of their distributed economic impacts. This is fulfilled with the development of a new GIS-supported extension of a comprehensive methodology that is currently used for appraising local transport interventions. To illustrate the inputs and outputs of the expanded approach, a regional case study was simulated, highlighting the potential for this methodology to assist in (1) optimising the financial balance between electrification and modal-shift strategies, (2) anticipating and analysing the multiple economic impacts of multimodal transport services (e.g., Mobility as a Service) and (3) understanding how equal the benefits of these policies are across the region. This research will provide novel contributions to the field of transport research and policy development by introducing a comprehensive methodology that quantifies and maps the distributed economic impacts of regional transport policies. This will, consequently, enable the economic outputs of these policies to be easily visualised, analysed and shared with mobility stakeholders, fostering a better understanding of their urban–rural distribution, and promoting the strategic development of sustainable and equitable regional transport systems. Full article
Show Figures

Figure 1

Back to TopTop