Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = sustainable emulsified acid treatments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2881 KB  
Article
UiO-66-(COOH)2 Decorated Collagen Fiber Membranes for High-Efficiency Separation of Cationic Surfactant-Stabilized Oil/Water Emulsions: Toward Sustainable and Robust Wastewater Treatment
by Guifang Yang, Qiu Wu, Gao Xiao and Xiaoxia Ye
Polymers 2025, 17(21), 2879; https://doi.org/10.3390/polym17212879 - 29 Oct 2025
Viewed by 530
Abstract
Membrane separation is a promising technology for emulsified wastewater treatment. However, conventional membrane often suffer from limitations such as low mechanical strength, the inherent “trade-off” effect between flux and separation efficiency, and poor antifouling properties. To address these challenges, we report a novel [...] Read more.
Membrane separation is a promising technology for emulsified wastewater treatment. However, conventional membrane often suffer from limitations such as low mechanical strength, the inherent “trade-off” effect between flux and separation efficiency, and poor antifouling properties. To address these challenges, we report a novel composite membrane (CFM-UiO-66-(COOH)2) fabricated by in situ growth of functionalized UiO-66-(COOH)2 on a mechanically robust collagen fiber membrane (CFM) substrate. The resulting composite leverages the inherent properties of the CFM, along with the controlled generation of charge-neutralization demulsification sites and size-sieving filtration layers from the UiO-66-(COOH)2. This CFM-UiO-66-(COOH)2 exhibited superwetting behavior and achieved efficient separation of cationic surfactant-stabilized oil-in-water micro- and nano-emulsions. Specifically, the CFM-UiO-66-(COOH)2 achieved separation efficiencies exceeding 99.85% for various cationic O/W emulsions, with permeation fluxes ranging from 178.9 to 225.9 L·m−2·h−1. The membrane also demonstrated robust antifouling properties, excellent acid/alkali resistance, high abrasion durability, and good biocompatibility. Importantly, stable performance was maintained over six consecutive separation cycles. These characteristics, combined with the electrostatic interactions between carboxyl groups on the UiO-66-(COOH)2 and cationic contaminants, suggest that CFM-UiO-66-(COOH)2 holds significant potential for practical and sustainable wastewater treatment applications. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

20 pages, 5045 KB  
Article
Sustainable Production and Antioxidant Activity of Bacterial Xanthan Gum
by Ilona Jonuškienė, Erika Davicijonaitė, Monika Vaškevičiūtė, Ihsan Kala, Rima Stankevičienė, Kristina Kantminienė and Ingrida Tumosienė
Molecules 2025, 30(13), 2734; https://doi.org/10.3390/molecules30132734 - 25 Jun 2025
Cited by 2 | Viewed by 2492
Abstract
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, [...] Read more.
One of the world’s most sustainable solutions is to replace fossil-based polymers with biopolymers. The production of xanthan gum can be optimized using various renewable and cost-effective raw materials, which is a key focus in industrial biotechnology. Xanthan gum is a bioengineered thickening, stabilizing, and emulsifying agent. It has unique properties for use in many industries (food, biotechnology, petrochemicals, agricultural, cosmetics, wastewater treatment) and medical applications. It is tasteless, environmentally safe, non-toxic, and biodegradable. The biotechnological production of xanthan gum depends on several factors: bacterial strain development, culture medium preparation, carbon sources, fermentation parameters and modes, pH, temperature, recovery, purification, and quality control regulations. Bio-innovative strategies have been developed to optimize the production of xanthan gum. A variety of carbon and nitrogen sources, as well as alternative renewable sources, have been used in the production of xanthan gum. The aim of the present study was to optimize the xanthan gum yield using Xanthomonas campestris bacteria and different carbon (D-glucose, D-sorbitol, lactose, sucrose, D-mannitol, D-fructose, erythritol, coconut palm sugar, L-arabinose, unrefined cane sugar), various nitrogen (bacterial peptone, casein peptone, L-glutamic acid, L-arginine, L-methionine, L-tryptophan, malt extract, meat extract, L-phenylalanine, soy peptone) and alternative carbon (orange peels, tangerine peels, lemon peels, avocado peels, melon peels, apple peels, cellulose, xylose, xylitol) sources. The xanthan gum samples were analyzed using antioxidant methods. Our study showed that using L-glutamic acid as the carbon source for 72 h of bacterial fermentation of Xanthomonas campestris resulted in the highest xanthan gum yield: 32.34 g/L. However, using renewable resources, we achieved a very high concentration of xanthan gum in just 24 h of fermentation. According to the reducing power and DPPH methods, the highest antioxidant activities were measured for xanthan gum whose biosynthesis was based on renewable resources. Xanthan gum structures have been verified by FT-IR and 1H NMR analysis. The sustainable biotechnology study has the advantage of increasing the sustainable production of xanthan gum by using renewable alternative resources compared to other production processes. Xanthan gum continues to be a valuable biopolymer with a wide range of industrial applications while promoting environmentally friendly production practices. Full article
(This article belongs to the Special Issue Natural Products with Pharmaceutical Activities)
Show Figures

Figure 1

41 pages, 10272 KB  
Article
Recent Advances in Stimulation Techniques for Unconventional Oil Reservoir and Simulation of Fluid Dynamics Using Predictive Model of Flow Production
by Charbel Ramy, Razvan George Ripeanu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță and Constantin Cristian Muresan
Processes 2025, 13(4), 1138; https://doi.org/10.3390/pr13041138 - 10 Apr 2025
Cited by 2 | Viewed by 1807
Abstract
This research makes a strong focus on improving fluid dynamics inside the reservoir after stimulation for enhancing oil and gas well performance, particularly in terms of increasing the Gas–oil ratio (GOR) and injectivity leading to a better productivity index (PI). Advanced stimulation operation [...] Read more.
This research makes a strong focus on improving fluid dynamics inside the reservoir after stimulation for enhancing oil and gas well performance, particularly in terms of increasing the Gas–oil ratio (GOR) and injectivity leading to a better productivity index (PI). Advanced stimulation operation using new formulated emulsified acid treatment greatly improves the reservoir permeability, allowing for better fluid movement and less formation damage. This, in turn, results in injectivity increases of at least 2.5 times and, in some situations, up to five times the original rate, which is critical for sustaining reservoir pressure and ensuring effective hydrocarbon recovery. The emulsified acid outperforms typical 15% HCl treatments in terms of dissolving and corrosion rates, as it is tuned for the reservoir’s pressure, temperature, permeability, and porosity. This dual-phase technology increases injectivity by five times while limiting the environmental and material consequences associated with spent and waste acid quantities. Field trials reveal significant improvements in injection pressure and a marked reduction in circulation pressure during stimulation, underscoring the treatment’s efficient penetration within the rock pores to enhance oil flow and sweep. This increase in performance is linked to the creation of the wormholing impact of the emulsified acid, resulting in improved fluid dynamics and optimized reservoir efficiency, as shown by the enhanced gas–oil ratio (GOR) in the four mentioned cases. A critical component of attaining such improvements is the capacity to effectively analyze and forecast reservoir behavior prior to executing the stimulation in real life. Engineers can accurately forecast injectivity gains and improve fluid injection tactics by constructing an advanced predictive model with low error margins, decreasing the need for time-consuming and costly trial-and-error approaches. Importantly, the research utilizes sophisticated neural network modeling to forecast stimulation results with minimal inaccuracies. This predictive ability not only diminishes the dependence on expensive and prolonged trial-and-error methods but also enables the proactive enhancement of treatment designs, thereby increasing efficiency and cost-effectiveness. This modeling approach based on several operational and reservoir factors, combines real-time field data, historical well performance records, and fluid flow simulations to verify that the expected results closely match the actual field outcomes. A well-calibrated prediction model not only reduces uncertainty but also improves decision making, allowing operators to create stimulation treatments based on unique reservoir features while minimizing unnecessary costs. Furthermore, enhancing fluid dynamics through precise modeling helps to improve GOR management by keeping gas output within appropriate limits while optimizing liquid hydrocarbon recovery. Finally, by employing data-driven modeling tools, oil and gas operators can considerably improve reservoir performance, streamline operational efficiency, and achieve long-term production growth through optimal resource usage. This paper highlights a new approach to optimizing reservoir productivity, aligning with global efforts to minimize environmental impacts in oil recovery processes. The use of real-time monitoring has boosted the study by enabling for exact measurement of post-injectivity performance and oil flow rates, hence proving the efficacy of these advanced stimulation approaches. The study offers unique insights into unconventional reservoir growth by combining numerical modeling, real-world data, and novel treatment methodologies. The aim is to investigate novel simulation methodology, advanced computational tools, and data-driven strategies for improving the predictability, reservoir performance, fluid behavior, and sustainability of heavy oil recovery operations. Full article
(This article belongs to the Special Issue Recent Advances in Heavy Oil Reservoir Simulation and Fluid Dynamics)
Show Figures

Figure 1

16 pages, 562 KB  
Review
Proteins from Microalgae: Nutritional, Functional and Bioactive Properties
by Juan Pablo García-Encinas, Saul Ruiz-Cruz, Jousé Juárez, José de Jesús Ornelas-Paz, Carmen Lizette Del Toro-Sánchez and Enrique Márquez-Ríos
Foods 2025, 14(6), 921; https://doi.org/10.3390/foods14060921 - 8 Mar 2025
Cited by 23 | Viewed by 9163
Abstract
Microalgae have emerged as a sustainable and efficient source of protein, offering a promising alternative to conventional animal and plant-based proteins. Species such as Arthrospira platensis and Chlorella vulgaris contain protein levels ranging from 50% to 70% of their dry weight, along with [...] Read more.
Microalgae have emerged as a sustainable and efficient source of protein, offering a promising alternative to conventional animal and plant-based proteins. Species such as Arthrospira platensis and Chlorella vulgaris contain protein levels ranging from 50% to 70% of their dry weight, along with a well-balanced amino acid profile rich in essential amino acids such as lysine and leucine. Their cultivation avoids competition for arable land, aligning with global sustainability goals. However, the efficient extraction of proteins is challenged by their rigid cell walls, necessitating the development of optimized methods such as bead milling, ultrasonication, enzymatic treatments, and pulsed electric fields. These techniques preserve functionality while achieving yields of up to 96%. Nutritional analyses reveal species-dependent digestibility, ranging from 70 to 90%, with Spirulina platensis achieving the highest rates due to low cellulose content. Functionally, microalgal proteins exhibit emulsifying, water-holding, and gel-forming properties, enabling applications in baking, dairy, and meat analogs. Bioactive peptides derived from these proteins exhibit antioxidant, antimicrobial (inhibiting E. coli and S. aureus), anti-inflammatory (reducing TNF-α and IL-6), and antiviral activities (e.g., Dengue virus inhibition). Despite their potential, commercialization faces challenges, including regulatory heterogeneity, high production costs, and consumer acceptance barriers linked to eating habits or sensory attributes. Current market products like Spirulina-enriched snacks and Chlorella tablets highlight progress, but food safety standards and scalable cost-effective extraction technologies remain critical for broader adoption. This review underscores microalgae’s dual role as a nutritional powerhouse and a source of multifunctional bioactives, positioning them at the forefront of sustainable food and pharmaceutical innovation. Full article
(This article belongs to the Special Issue Seafood Proteins: Nutritional, Functional and Bioactive Properties)
Show Figures

Figure 1

34 pages, 11386 KB  
Article
Sustainable Emulsified Acid Treatments for Enhanced Oil Recovery in Injection Wells: A Case Study in the Qusahwira Field
by Charbel Ramy, Razvan George Ripeanu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță and Constantin Cristian Muresan
Sustainability 2025, 17(3), 856; https://doi.org/10.3390/su17030856 - 22 Jan 2025
Cited by 4 | Viewed by 3476
Abstract
Emulsified acid treatments present an innovative and environmentally sustainable alternative to conventional hydrochloric acid (HCl) methods in enhancing oil recovery. This study investigates the application of a stable emulsified acid formulation in matrix acidizing operations to improve injectivity in four wells within the [...] Read more.
Emulsified acid treatments present an innovative and environmentally sustainable alternative to conventional hydrochloric acid (HCl) methods in enhancing oil recovery. This study investigates the application of a stable emulsified acid formulation in matrix acidizing operations to improve injectivity in four wells within the Qusahwira Field. Compared to traditional 15% HCl treatments, the emulsified acid demonstrates deeper acid penetration and retardation effect leading to enhanced injection rate. By delivering deep worm holing effects against calcium carbonate formation, this dual-phase system enhances injectivity by 14 times while minimizing the environmental and material impacts associated with spent acid volumes. The methodology integrates advanced neural network modeling to predict stimulation outcomes based on 15 operational and reservoir factors. This model reduces the trial-and-error approach, cutting operational costs and time for carbonate reservoir. Field trials reveal significant improvements in injection pressure and a marked reduction in circulation pressure during stimulation, underscoring the treatment’s efficiency. Developed in a Superior Abu Dhabi laboratory, the emulsified acid achieves high-temperature stability (200 °F) and deep acid penetration, further reducing the ecological footprint of acid stimulation by enhancing operational precision and reducing chemical use. This paper highlights a sustainable approach to optimizing reservoir productivity, aligning with global efforts to minimize environmental impacts in oil recovery processes. Full article
Show Figures

Figure 1

12 pages, 893 KB  
Article
Managing Weed–Crop Interactions Enhances Chickpea (Cicer arietinum L.) Chemical Components
by Imtiaz Khan, Muhammad Ishfaq Khan, Saima Hashim, Muhammad Fawad, Aftab Jamal, Mahmoud F. Seleiman, Haroon Khan, Bakhtiar Gul, Zahid Hussain, Muhammad Farhan Saeed and Aurelio Scavo
Plants 2023, 12(17), 3073; https://doi.org/10.3390/plants12173073 - 27 Aug 2023
Cited by 10 | Viewed by 3024
Abstract
Chickpea (Cicer arietinum L.) is a major pulse crop worldwide, renowned for its nutritional richness and adaptability. Weeds are the main biotic factor deteriorating chickpea yield and nutritional quality, especially Asphodelus tenuifolius Cav. The present study concerns a two-year (2018–19 and 2019–20) [...] Read more.
Chickpea (Cicer arietinum L.) is a major pulse crop worldwide, renowned for its nutritional richness and adaptability. Weeds are the main biotic factor deteriorating chickpea yield and nutritional quality, especially Asphodelus tenuifolius Cav. The present study concerns a two-year (2018–19 and 2019–20) field trial aiming at evaluating the effect of weed management on chickpea grain quality. Several weed management practices have been here implemented under a factorial randomized complete block design, including the application of four herbicides [bromoxynil (C7H3Br2NO) + MCPA (Methyl-chlorophenoxyacetic acid) (C9H9ClO3), fluroxypyr + MCPA, fenoxaprop-p-ethyl (C18H16ClNO5), pendimethalin (C13H19N3O4)], the extracts from two allelopathic weeds (Sorghum halepense and Cyperus rotundus), two mulches (wheat straw and eucalyptus leaves), a combination of A. tenuifolius extract and pendimethalin, and an untreated check (control). Chickpea grain quality was measured in terms of nitrogen, crude protein, crude fat, ash, and oil content. The herbicides pendimethalin (Stomp 330 EC (emulsifiable concentrate) in pre-emergence at a rate of 2.5 L ha−1) and fenoxaprop-p-ethyl (Puma Super 7.5 EW (emulsion in water) in post-emergence at a rate of 1.0 L ha−1), thanks to A. tenuifolius control, showed outstanding performance, providing the highest dietary quality of chickpea grain. The herbicides Stomp 330 EC, Buctril Super 40 EC, Starane-M 50 EC, and Puma Super 7.5 EW provided the highest levels of nitrogen. Outstanding increases in crude protein content were observed with all management strategies, particularly with Stomp 330 EC and Puma Super 7.5 EW (+18% on average). Ash content was highly elevated by Stomp 330 EC and Puma Super 7.5 EW, along with wheat straw mulching, reaching levels of 2.96% and 2.94%. Crude fat content experienced consistent elevations across all treatments, with the highest improvements achieved by Stomp 330 EC, Puma Super 7.5 EW, and wheat straw mulching applications. While 2018–19 displayed no significant oil content variations, 2019–20 revealed the highest oil content (5.97% and 5.96%) with herbicides Stomp 330 EC and Puma Super 7.5 EW, respectively, followed by eucalyptus leaves mulching (5.82%). The results here obtained are of key importance in the agricultural and food sector for the sustainable enhancement of chickpea grain’s nutritional quality without impacting the environment. Full article
(This article belongs to the Special Issue Sustainable Weed Management II)
Show Figures

Figure 1

17 pages, 3365 KB  
Article
The Impact of Dormancy Breakers on Hormone Profiles, Fruit Growth and Quality in Sweet Cherry
by Sally A. Bound, Eloise Foo, Ariane Gélinas-Marion, David S. Nichols and Robert Nissen
Agriculture 2022, 12(2), 270; https://doi.org/10.3390/agriculture12020270 - 14 Feb 2022
Cited by 8 | Viewed by 9570
Abstract
Chemical dormancy breakers are often used to manipulate floral bud break in sweet cherry production, and their use is increasing due to unpredictable climate effects. The role of plant hormones in regulating the critical transition of floral buds from dormant to opening in [...] Read more.
Chemical dormancy breakers are often used to manipulate floral bud break in sweet cherry production, and their use is increasing due to unpredictable climate effects. The role of plant hormones in regulating the critical transition of floral buds from dormant to opening in deciduous trees is now emerging. By monitoring changes in endogenous hormone levels within floral buds that are undergoing the transition from dormant to the growing state in response to various cues (environmental and/or chemical inducers), we can begin to distinguish the plant hormones that are the drivers of this process. This study sought to identify key hormonal regulators of floral bud break using sweet cherry as a model and modifying timing of bud break through the application of two chemical dormancy breakers, hydrogen cyanamide (HC, Dormex®) and emulsified vegetable oil compound (EVOC, Waiken®), and to determine the effect of these chemicals on fruit growth and quality. Treatments were applied at label rates 35–40 days before estimated bud break. We found that HC-treated tree buds broke earlier, and this was associated with a significant early elevation of the cytokinins dihydrozeatin and dihydrozeatin riboside compared to the control and EVOC-treated tree buds. In contrast, changes in auxin and abscisic acid content did not appear to explain the hastened bud burst induced by hydrogen cyanamide. While HC-treated trees resulted in larger fruit, there was a higher incidence of cracked fruit and the pack-out of A-grade fruit was reduced. The increase in fruit size was attributed to the earlier flowering and hence longer growing period. Harvest assessment of fruit quality showed no treatment effect on most quality parameters, including fruit dry matter content, total soluble solids or malic acid content, but a reduction in fruit compression firmness and stem pull force in EVOC-treated trees was observed. However, all fruit still met the Australian industry fruit quality export market standards. This study offers important insights into bud hormonal activities underpinning the action of these chemical regulators; understanding bud responses is critically important to ensuring consistent and sustainable fruit tree production systems into the future. It also demonstrates that the dormancy-breaking agents HC and EVOC have no detrimental impact on fruit quality at harvest or following storage, however growers need to be aware of the potential for increased fruit cracking when earlier bud break results in a longer growing season which has the potential to increase fruit size. Further studies are required to determine the role of gibberellin in hastening bud break by dormancy breakers. Full article
Show Figures

Figure 1

23 pages, 6681 KB  
Article
In Situ Bioremediation of a Chlorinated Hydrocarbon Plume: A Superfund Site Field Pilot Test
by Peter Guerra, Akemi Bauer, Rebecca A. Reiss and Jim McCord
Appl. Sci. 2021, 11(21), 10005; https://doi.org/10.3390/app112110005 - 26 Oct 2021
Cited by 8 | Viewed by 3677
Abstract
The North Railroad Avenue Plume, discovered in 1989, contained chlorinated solvent groundwater plumes extending over 23.5 hectares (58 acres) and three hydrostratigraphic units. The source contaminant, tetrachloroethene, stemmed from release at a dry cleaner/laundromat business. The anaerobic biodegradation byproducts trichloroethene, isomers of dichloroethene [...] Read more.
The North Railroad Avenue Plume, discovered in 1989, contained chlorinated solvent groundwater plumes extending over 23.5 hectares (58 acres) and three hydrostratigraphic units. The source contaminant, tetrachloroethene, stemmed from release at a dry cleaner/laundromat business. The anaerobic biodegradation byproducts trichloroethene, isomers of dichloroethene (DCE), and vinyl chloride were detected in groundwater samples collected prior to remedial action. The impacted aquifers are the sole source drinking water aquifers for the communities near the site. Following the remedial investigation and feasibility study, the selected alternative for full-scale remedial action at the site was enhanced reductive dichlorination (ERD) focused on four treatment areas: the shallow source zone, the shallow hotspot area, the shallow downgradient area, and the deep zone. Pilot testing, which was conducted in the source zone and hotspot areas, is the subject of this paper. The primary objectives of the pilot test were to obtain the necessary information to select an ERD treatment formulation, dose, and frequency of dosing for use during full-scale remedial action, as well as to refine the site’s hydrogeologic conceptual site model and design parameters. Four (4) test cells, each of which contained well pairs of injection and downgradient extraction wells, were used to test ERD bio-amendment formulations: ethyl lactate, dairy whey, emulsified vegetable oil (EVO), and a combination of EVO and a hydrogen gas infusion. A conservative tracer, bromide, was added to the recirculation flow to record tracer breakthrough, peak, and dissipation at extraction wells. The results of these dipole tracer tests were used to reassess the hydraulic conductivity and hydrodynamic dispersity used in the remedial design. In addition to water quality analyses of contaminants and substrates, groundwater samples were also analyzed for biological analyses before, during, and after the addition of bioamendment. Analyses of phospholipid fatty acids and deoxyribonucleic acid (DNA) extracts from fresh groundwater samples informed decisions on the capacity for complete ERD without DCE stalling and tracked the shifts in the bacterial and archaeal taxonomy and phylogeny stemming from the addition of bioamendments. The pilot test concluded that EVO was the most suitable, considering (1) support of the native microbial consortia for ERD, (2) mechanics and hydraulics of the remediation system, and (3) sustainability/retention of the substrate in the subsurface. Along with EVO, the addition of a nutrient broth derived from brewery waste accelerated and sustained the desired conditions and microbial diversity and population levels. The pilot test results were also used to assess the utilization kinetics of the injected substrates based on total organic carbon (TOC) concentrations measured in the groundwater. After determining that substrate utilization followed Monod kinetics, a TOC threshold at 300 milligrams per liter, equivalent to approximately twice its half-saturation constant was established. Full scale treatment dosing and dose frequency were designed around this threshold, assuming the maximum substrate utilization would yield optimum ERD. Full article
Show Figures

Figure 1

Back to TopTop