Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = surface air-flow bioreactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2009 KB  
Article
Integrated Process of Biosurfactant Production by Bacillus atrophaeus ATCC-9372 Using an Air-Lift Bioreactor Coupled to a Foam Fraction Column
by Maria de Fátima F. Rocha, Paulo S. Sobral Júnior, Milena S. Leite, Luciana P. Malpiedi, Matheus M. Pereira, Cleide M. F. Soares and Álvaro S. Lima
Fermentation 2023, 9(11), 959; https://doi.org/10.3390/fermentation9110959 - 9 Nov 2023
Cited by 6 | Viewed by 3408
Abstract
Biosurfactants are surface-active molecules, produced by several microorganisms, that possess unique properties such as low toxicity and biodegradability. Their application in various industries depends on their purity and their specific properties, such as emulsification and stability. Therefore, this study focuses on the production [...] Read more.
Biosurfactants are surface-active molecules, produced by several microorganisms, that possess unique properties such as low toxicity and biodegradability. Their application in various industries depends on their purity and their specific properties, such as emulsification and stability. Therefore, this study focuses on the production of biosurfactant from Bacillus atrophaeus in an air-lift bioreactor. It analyzes the effects of agitation rate and temperature on biosurfactant production, as well as the concurrent separation process using a foam fractionation column. Moreover, the ability of the produced biosurfactant to form emulsions in water with several substrates (vegetables oils, hydrocarbons, and fossil fuels) was determined, and the stability of the soybean oil–water emulsion (used as an example) at different temperatures and pH values was verified. The biosurfactant produced, tentatively identified as iturin, was only detected in the coalescent liquid after passing through the foam fractionation column, demonstrating the complete separation of the biosurfactant. The best operational conditions for production and separation were an air flow of 1.00 vvm and a temperature of 34 °C (emulsifier index (EI24) = 66.9%, and productivity (Pp) = 967.5% mL h−1). Vegetable oils, hydrocarbons, and fossil fuels were emulsified in water, highlighting the soybean oil, whose emulsion oil–water had the highest ES (3333.3 min) at a temperature of 50 °C and a pH value of 9.0. Full article
(This article belongs to the Special Issue Production and Application of Bioactive Biosurfactants)
Show Figures

Figure 1

14 pages, 4565 KB  
Article
Optimization of the Biotreatment of GTL Process Water Using Pseudomonas aeruginosa Immobilized in PVA Hydrogel
by Somaya A. Ahmed, Riham Surkatti, Muneer M. Ba-Abbad and Muftah H. El-Naas
Processes 2022, 10(12), 2568; https://doi.org/10.3390/pr10122568 - 2 Dec 2022
Cited by 4 | Viewed by 2449
Abstract
The COD reduction in gas to liquid (GTL) process water was optimized using response surface methodology (RSM). The biodegradation process was carried out in a spouted bed bioreactor (SBBR) using Pseudomonas aeruginosa immobilized in polyvinyl alcohol (PVA) gel. Different factors affecting the biological [...] Read more.
The COD reduction in gas to liquid (GTL) process water was optimized using response surface methodology (RSM). The biodegradation process was carried out in a spouted bed bioreactor (SBBR) using Pseudomonas aeruginosa immobilized in polyvinyl alcohol (PVA) gel. Different factors affecting the biological treatment of GTL process water (PW) were investigated. Three variables including PVA volume fraction, initial COD, and pH were investigated in the batch experiments. The biodegradation experiments were carried out by varying the initial COD values from 1000 to 3000 mg/L, pH from 5 to 8, and PVA v% from 20 to 30%. The maximum COD reduction was estimated to occur at an initial COD of 2595 mg/L, PVA v% of 27%, and pH of 7.3. At optimum conditions, the bioreactor system was able to achieve a maximum COD reduction of 89%, which is quite close to the RSM prediction value of 90%. The optimum operating conditions were used to carry out continuous biodegradation, and the results indicated that the COD reduction increased from 60% to 62% with an increase in the air flow rate from 2 to 3.3 La/Lr.min. However, by increasing the liquid flow rate from 2.1 to 4.2 mL/min and back to 2.1 mL/min, the COD reduction decreased from 66% to 39%. The system responded quickly to the change in liquid flow rate and returned to the initial COD level. This indicates that the system is highly stable and can easily recover. Full article
Show Figures

Graphical abstract

23 pages, 16385 KB  
Article
Characterization of the Aeration and Hydrodynamics in Vertical-Wheel Bioreactors
by Pedro M. Neto, Diogo E. S. Nogueira, Yas Hashimura, Sunghoon Jung, Bruno Pedras, Mário N. Berberan-Santos, Tiago Palmeira, Brian Lee, Joaquim M. S. Cabral, Vitor Geraldes and Carlos A. V. Rodrigues
Bioengineering 2022, 9(8), 386; https://doi.org/10.3390/bioengineering9080386 - 12 Aug 2022
Cited by 8 | Viewed by 4152
Abstract
In this work, the oxygen transport and hydrodynamic flow of the PBS Vertical-Wheel MINI 0.1 bioreactor were characterized using experimental data and computational fluid dynamics simulations. Data acquired from spectroscopy-based oxygenation measurements was compared with data obtained from 3D simulations with a [...] Read more.
In this work, the oxygen transport and hydrodynamic flow of the PBS Vertical-Wheel MINI 0.1 bioreactor were characterized using experimental data and computational fluid dynamics simulations. Data acquired from spectroscopy-based oxygenation measurements was compared with data obtained from 3D simulations with a rigid-lid approximation and LES-WALE turbulence modeling, using the open-source software OpenFOAM-8. The mass transfer coefficients were determined for a range of stirring speeds between 10 and 100 rpm and for working volumes between 60 and 100 mL. Additionally, boundary condition, mesh refinement, and temperature variation studies were performed. Lastly, cell size, energy dissipation rate, and shear stress fields were calculated to determine optimal hydrodynamic conditions for culture. The experimental results demonstrate that the kL can be predicted using Sh=1.68Re0.551Sc13G1.18, with a mean absolute error of 2.08%. Using the simulations and a correction factor of 0.473, the expression can be correlated to provide equally valid results. To directly obtain them from simulations, a partial slip boundary condition can be tuned, ensuring better near-surface velocity profiles or, alternatively, by deeply refining the mesh. Temperature variation studies support the use of this correlation for temperatures up to 37 °C by using a Schmidt exponent of 1/3. Finally, the flow was characterized as transitional with diverse mixing mechanisms that ensure homogeneity and suspension quality, and the results obtained are in agreement with previous studies that employed RANS models. Overall, this work provides new data regarding oxygen mass transfer and hydrodynamics in the Vertical-Wheel bioreactor, as well as new insights for air-water mass transfer modeling in systems with low interface deformation, and a computational model that can be used for further studies. Full article
Show Figures

Graphical abstract

14 pages, 3597 KB  
Article
Maximizing Recovery of Paenibacillin, a Bacterially Produced Lantibiotic, Using Continuous Foam Separation from Bioreactors
by Emily P. Campbell, David R. Kasler and Ahmed E. Yousef
Foods 2022, 11(15), 2290; https://doi.org/10.3390/foods11152290 - 31 Jul 2022
Viewed by 2464
Abstract
Industrial production of paenibacillin, and similar rare antimicrobial peptides, is hampered by low productivity of the producing microorganisms and lack of efficient methods to recover these peptides from fermentor or bioreactor end products. Preliminary data showed that paenibacillin was preferentially partitioned in foam [...] Read more.
Industrial production of paenibacillin, and similar rare antimicrobial peptides, is hampered by low productivity of the producing microorganisms and lack of efficient methods to recover these peptides from fermentor or bioreactor end products. Preliminary data showed that paenibacillin was preferentially partitioned in foam accumulated during growth of the producer, Paenibacillus polymyxa, in aerated liquid media. This research was initiated to improve the production and recovery of paenibacillin in bioreactors by maximizing partitioning of this antimicrobial agent in the collected foam. This was completed through harvesting foam continuously during paenibacillin production, using modified bioreactor, and optimizing bioreaction conditions through response surface methodology (RSM). During initial screening, the following factors were tested using 400 mL inoculated media in 2 L bioreactors: medium (tryptic soy broth, TSB, with or without added yeast extract), airflow (0 or 0.8 L/min; LPM), stir speed (300 or 500 revolution/min; RPM), incubation temperature (30 or 36 °C), and incubation time (16 or 24 h). Results showed that airflow, time, and stir speed had significant effects (p < 0.05) on paenibacillin recovery in the collected collapsed foam (foamate). These factors were varied together to follow the path of steepest assent to maximize paenibacillin concentration. Once the local maximum was found, RSM was completed with a central composite design to fine-tune the bioreaction parameters. The optimization experiments proved that the significant parameters and their optimal conditions for paenibacillin concentration in the foam were: incubation at 30 °C for 23 h with airflow of 0.95 LPM, and agitation speed of 450 RPM. These conditions increased paenibacillin concentration, predicted by RSM, from 16 µg/mL in bioreaction without foam collection to 743 µg/mL collected in foamate. The optimized conditions also almost doubled the yield of paenibacillin measured in the foam collected from a bioreaction run (12,674 µg/400 mL bioreaction) when compared to that obtained from a run without foam collection (6400 µg/400 mL bioreaction). Results of this study could improve the feasibility of commercial production and downstream processing of paenibacillin and similar novel antimicrobial peptides. Availability of such peptides will eventually help in protecting perishable products against pathogenic and spoilage bacteria. Full article
Show Figures

Figure 1

18 pages, 3671 KB  
Article
BNC Biosynthesis with Increased Productivity in a Newly Designed Surface Air-Flow Bioreactor
by Izabela Cielecka, Małgorzata Ryngajłło and Stanisław Bielecki
Appl. Sci. 2020, 10(11), 3850; https://doi.org/10.3390/app10113850 - 1 Jun 2020
Cited by 14 | Viewed by 3614
Abstract
The application of bacterial cellulose (BNC) could be widely expanded if the production costs were reduced. This study aims to determine factors simultaneously affecting the yield and tensile strength of BNC in a newly designed surface air-flow bioreactor (SAF). For this purpose, a [...] Read more.
The application of bacterial cellulose (BNC) could be widely expanded if the production costs were reduced. This study aims to determine factors simultaneously affecting the yield and tensile strength of BNC in a newly designed surface air-flow bioreactor (SAF). For this purpose, a two-stage study was done. Firstly, the most important factors for high yield were determined based on the Plackett–Burman Design. Secondly, impact of the chosen variables on both responses was assessed in a wide range of factor values. The greatest influence on the yield and mechanical strength was proved for such factors as air-flow ratio, glucose concentration, and culture time. The productivity in a SAF bioreactor with controlled air-flow ratio was enhanced by 65%. In terms of mechanical properties, the stress of BNC membranes varied from 0.8 to 6.39 MPa depending on the culture conditions. The results of the performed tests make a useful basis for future optimizations. Full article
(This article belongs to the Special Issue Bacterial Cellulose Biomaterials)
Show Figures

Figure 1

6 pages, 541 KB  
Proceeding Paper
Membrane Fouling Monitoring in a Submerged Membrane Bioreactor
by Konstantinos Azis, Marianthi Malioka, Spyridon Ntougias and Paraschos Melidis
Proceedings 2018, 2(11), 653; https://doi.org/10.3390/proceedings2110653 - 30 Jul 2018
Viewed by 2246
Abstract
Use of Membrane Bioreactor (MBR) technology for municipal wastewater treatment has been increased in recent years, as it successfully overcomes the disadvantages of the conventional activated sludge process. Membrane fouling is the major disadvantage of MBRs and leads to decreased membrane performance and [...] Read more.
Use of Membrane Bioreactor (MBR) technology for municipal wastewater treatment has been increased in recent years, as it successfully overcomes the disadvantages of the conventional activated sludge process. Membrane fouling is the major disadvantage of MBRs and leads to decreased membrane performance and expanded operational expenses. In this study, fouling was monitored in a pilot-scale submerged MBR system fed with municipal wastewater. TMP was directly measured on the membrane module during the operation. To control TMP increase owing to biosolids accumulation on membrane surface, successive backwashes and air-cross flow velocity increase were applied. These measures lowered TMP and improved flux. Full article
(This article belongs to the Proceedings of EWaS3 2018)
Show Figures

Figure 1

Back to TopTop