Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = subnanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2343 KiB  
Article
Structural and Optical Properties of BaWO4 Obtained by Fast Mechanochemical Treatment
by Maria Gancheva, Reni Iordanova, Iovka Koseva, Iskra Piroeva and Petar Ivanov
Inorganics 2025, 13(5), 172; https://doi.org/10.3390/inorganics13050172 - 18 May 2025
Viewed by 520
Abstract
This work investigated the optical characteristics of BaWO4 nanoparticles that were produced through direct mechanochemical synthesis at varying speeds and times. This research expands upon our previous study. We demonstrated that the mechanochemical activation of the precursor of BaCO3 and WO [...] Read more.
This work investigated the optical characteristics of BaWO4 nanoparticles that were produced through direct mechanochemical synthesis at varying speeds and times. This research expands upon our previous study. We demonstrated that the mechanochemical activation of the precursor of BaCO3 and WO3, at elevated milling speeds (850 rpm), facilitates the formation of tetragonal BaWO4 in a reduced reaction time. The final products were characterized by scanning electron microscopy (SEM), as well as Raman, infrared (IR), UV-Vis diffuse reflectance, and photoluminescence spectroscopies. The crystallite sizes and particles shapes were determined by X-ray diffraction and SEM analysis. Round particles with a size below 50 nm formed under different milling conditions. The Raman spectra of the synthesized samples confirmed the presence of a scheelite-type structure with the typical six distinct vibrational peaks. The symmetry of the structural WO4 groups was determined by IR spectroscopy. The absorption spectra of both samples exhibited intensive peaks at 210 nm, and the calculated optical band gaps of BaWO4 were 5.10 eV (3 h/500 rpm) and 5.24 eV (1 h/850 rpm). A strong (400 nm) and weak (465 nm) emission were observed for the BaWO4 that was obtained at a higher milling speed, while wider emission at 410 nm was visible for the BaWO4 that was prepared at a lower milling speed. The CIE coordinates of the mechanochemically synthesized BaWO4 were located within the blue area, exhibiting various positions. Full article
Show Figures

Figure 1

13 pages, 2329 KiB  
Article
Effect of Cerium (IV) Oxide Particle Size on Polydimethylsiloxane Polymer to Form Flexible Materials against Ionizing Radiation
by Haifa M. Almutairi, Wafa M. Al-Saleh, Mohammad Ibrahim Abualsayed and Mohamed Elsafi
Polymers 2023, 15(13), 2883; https://doi.org/10.3390/polym15132883 - 29 Jun 2023
Cited by 14 | Viewed by 1740
Abstract
This study aims to investigate the impact of CeO2 content and particle size on the radiation shielding abilities of polydimethylsiloxane, also known as silicon rubber (SR). We prepared different SR samples with 10, 30, and 50% of micro and nano CeO2 [...] Read more.
This study aims to investigate the impact of CeO2 content and particle size on the radiation shielding abilities of polydimethylsiloxane, also known as silicon rubber (SR). We prepared different SR samples with 10, 30, and 50% of micro and nano CeO2 and we measured the linear attenuation coefficient (LAC) for these samples. We found that the LAC of the SR increases by increasing the CeO2 and all prepared SR samples had higher LACs than the pure SR. We examined the effect of the size of the particles on the LAC and the results demonstrated that the LAC for nano CeO2 is higher than that of micro CeO2. We investigated the half value layer (HVL) for the prepared SR samples and the results revealed that the SR with 10% micro CeO2 had a greater HVL than the SR with 10% nano CeO2. The HVL results demonstrated that the SR containing nanoparticles had higher attenuation effectiveness than the SR with micro CeO2. We also prepared SR samples containing CeO2 in both sizes (i.e., micro and nano) and we found that the HVL of the SR containing both sizes was lower than the HVL of the SR with nano CeO2. The radiation protection efficiency (RPE) at 0.059 MeV for the SR with 10% micro and nano CeO2 was 94.2 and 95.6%, respectively, while the RPE of SR containing both sizes (5% micro CeO2 + 5% micro CeO2) was 96.1% at the same energy. The RPE results also indicated that the attenuation ability was improved when utilizing the micro and nano CeO2 as opposed to the micro CeO2 or nano CeO2 at 0.662, 1.173, and 1.333 MeV. Full article
(This article belongs to the Special Issue Nanopolymers and Nanocomposites)
Show Figures

Figure 1

20 pages, 3659 KiB  
Article
Mordenite-Supported Ag+-Cu2+-Zn2+ Trimetallic System: A Variety of Nanospecies Obtained via Thermal Reduction in Hydrogen Followed by Cooling in an Air or Hydrogen Atmosphere
by Inocente Rodríguez-Iznaga, Vitalii Petranovskii, Felipe F. Castillón-Barraza, Sergio Fuentes-Moyado, Fernando Chávez-Rivas and Alexey Pestryakov
Materials 2023, 16(1), 221; https://doi.org/10.3390/ma16010221 - 26 Dec 2022
Cited by 5 | Viewed by 1953
Abstract
Multimetallic systems, instead of monometallic systems, have been used to develop materials with diverse supported species to improve their catalytic, antimicrobial activity, etc., properties. The changes in the types of nanospecies obtained through the thermal reduction of ternary Ag+-Cu2+-Zn [...] Read more.
Multimetallic systems, instead of monometallic systems, have been used to develop materials with diverse supported species to improve their catalytic, antimicrobial activity, etc., properties. The changes in the types of nanospecies obtained through the thermal reduction of ternary Ag+-Cu2+-Zn2+/mordenite systems in hydrogen, followed by their cooling in an air or hydrogen atmosphere, were studied. Such combinations of trimetallic systems with different metal content, variable ratios (between them), and alternating atmosphere types (during the cooling after reducing the samples in hydrogen at 350 °C) lead to diversity in the obtained copper and silver nanospecies. No reduction of Zn2+ was evidenced. A low silver content leads to the formation of reduced silver clusters, while the formation of nanoparticles of a bigger size takes place in the trimetallic samples with high silver content. The cooling of the reduced trimetallic samples in the air causes the oxidation of the obtained metallic clusters and silver and copper nanoparticles. In the case of copper, such conditions lead to the formation of mainly copper (II) oxide, while the silver nanospecies are converted mainly into clusters and nanoparticles. The zinc cations provoked changes in the mordenite matrix, which was associated with the formation of point oxygen defects in the mordenite structure and the formation of surface zinc oxide sub-nanoparticles in the samples cooled in the air. Full article
(This article belongs to the Special Issue Functional Nanomaterials for a Better Life (Volume II))
Show Figures

Figure 1

22 pages, 2238 KiB  
Article
Adsorption of Selected Molecules on (TiO2)20 Nano-Clusters: A Density-Functional-Theory Study
by Faustino Aguilera-Granja, Rodrigo H. Aguilera-del-Toro and Erik Díaz-Cervantes
Nanomanufacturing 2022, 2(3), 124-145; https://doi.org/10.3390/nanomanufacturing2030010 - 1 Sep 2022
Cited by 11 | Viewed by 3198
Abstract
In this work, the adsorption energies and some of the main electronic properties of selected biological molecules adsorbed onto a (TiO2)20 cluster were studied. With this aim, Density-Functional Theory (DFT) calculations were performed using SIESTA code. The Perdew–Burke–Ernzerhof (PBE) functional [...] Read more.
In this work, the adsorption energies and some of the main electronic properties of selected biological molecules adsorbed onto a (TiO2)20 cluster were studied. With this aim, Density-Functional Theory (DFT) calculations were performed using SIESTA code. The Perdew–Burke–Ernzerhof (PBE) functional within the Generalized Gradient Approximation (GGA) was used for the exchange and correlation potential. For this study, we chose molecules with very different characteristics and applications in everyday life, including antibiotics, anti-inflammatory drugs, vitamins, and so on. The TiO2 substrate was considered due to its harmlessness and versatility of application in various industries. In particular, we studied the changes in some of the main electronic properties of the molecules after adsorption onto titanium dioxide. For all of the molecules studied here, we observed that this substrate can increase the stability of the adsorbed molecules, with values in the range of 12–150 meV/atom. The reliability of our calculations was verified through additional optimizations with other DFT codes, considering the hybrid functionals B3LYP and M06-L. Our results showed a reasonably good agreement among these three functionals, thereby revealing the possibility of adsorption of the selected biological molecules onto the vertex of the TiO2 nanoclusters. Some of these molecules were considered as possible candidates for the delivery of drugs into the SARS-CoV-2 main protease, promoting the inhibition of this virus. We are not aware of any systematic study that has focused on the adsorption of the selected molecules on a (TiO2)20 substrate within the same framework, including the analysis of the differences in electronic properties through the use of different functionals. Full article
Show Figures

Graphical abstract

13 pages, 5972 KiB  
Article
Impact of WO3-Nanoparticles on Silicone Rubber for Radiation Protection Efficiency
by Hanan Al-Ghamdi, Hanaa M. Hemily, I. H. Saleh, Z. F. Ghataas, A. A. Abdel-Halim, M. I. Sayyed, Sabina Yasmin, Aljawhara H. Almuqrin and Mohamed Elsafi
Materials 2022, 15(16), 5706; https://doi.org/10.3390/ma15165706 - 18 Aug 2022
Cited by 31 | Viewed by 2385
Abstract
Silicone rubbers are a good choice for shielding materials because of having elastic and attenuating properties as well as cost-effectiveness. Thus, the aim of this study was to prepare ground-breaking silicone rubber samples by adding WO3-nanoparticles and testing the performance of [...] Read more.
Silicone rubbers are a good choice for shielding materials because of having elastic and attenuating properties as well as cost-effectiveness. Thus, the aim of this study was to prepare ground-breaking silicone rubber samples by adding WO3-nanoparticles and testing the performance of their radiation shielding ability against Cs-137, Co-60, and Am-241 gamma energy. Increasing the concentration of WO3 nanoparticles in silicone rubber (SR) led to decreasing the half-value layer (HVL) and mean free path (MFP) values determined for the samples tested. Furthermore, the values of MFP and HVL upsurged according to the enhancement of the photon energy. It is noteworthy that the prepared silicone rubber (SR) systems with 50 and 60 wt% concentrations of WO3-nanoparticles displayed lower HVL than the Bi2O3-containing silicone rubber (SR) systems. In the same way, studied silicone rubber SR-W60 represented the lowest HVL comprising iron ore containing silicone rubber. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials: Synthesis, Properties, and Applications)
Show Figures

Figure 1

16 pages, 3890 KiB  
Article
Synthesis of Metal-Loaded Carboxylated Biopolymers with Antibacterial Activity through Metal Subnanoparticle Incorporation
by Farzaneh Noori, Meriem Megoura, Marc-André Labelle, Mircea Alexandru Mateescu and Abdelkrim Azzouz
Antibiotics 2022, 11(4), 439; https://doi.org/10.3390/antibiotics11040439 - 24 Mar 2022
Cited by 6 | Viewed by 2618
Abstract
Carboxymethyl starch (CMS) and carboxymethyl cellulose (CMC) loaded by highly dispersed metal subnanoparticles (MSNPs) showed antibacterial activity against E. coli and B. subtilis strains. Copper and silver were found to act in both cationic and zero-valence forms. The antibacterial activity depends on the [...] Read more.
Carboxymethyl starch (CMS) and carboxymethyl cellulose (CMC) loaded by highly dispersed metal subnanoparticles (MSNPs) showed antibacterial activity against E. coli and B. subtilis strains. Copper and silver were found to act in both cationic and zero-valence forms. The antibacterial activity depends on the metal species content but only up to a certain level. Silver cation (Ag+) showed higher antibacterial activity as compared to Ag0, which was, however, more effective than Cu0, due to weaker retention. The number of carboxyl groups of the biopolymers was found to govern the material dispersion in aqueous media, the metal retention strength and dispersion in the host-matrices. Cation and metal retention in both biopolymers was found to involve interactions with the oxygen atoms of both hydroxyl and carboxyl groups. There exists a ternary interdependence between the Zeta potential (ZP), pH induced by the biocidal agent and its particle size (PS). This interdependence is a key factor in the exchange processes with the surrounding species, including bacteria. Clay mineral incorporation was found to mitigate material dispersion, due to detrimental competitive clay:polymer interaction. This knowledge advancement opens promising prospects for manufacturing metal-loaded materials for biomedical applications. Full article
(This article belongs to the Special Issue Bacterial Contamination and Nano-Technological Solutions in Industry)
Show Figures

Graphical abstract

18 pages, 3219 KiB  
Article
In Situ Determination of Droplet and Nanoparticle Size Distributions in Spray Flame Synthesis by Wide-Angle Light Scattering (WALS)
by Simon Aßmann, Bettina Münsterjohann, Franz J. T. Huber and Stefan Will
Materials 2021, 14(21), 6698; https://doi.org/10.3390/ma14216698 - 7 Nov 2021
Cited by 16 | Viewed by 2929
Abstract
The investigation of droplet and nanoparticle formation in spray flame synthesis requires sophisticated measurement techniques, as often both are present simultaneously. Here, wide-angle light scattering (WALS) was applied to determine droplet and nanoparticle size distributions in spray flames from a standardized liquid-fed burner [...] Read more.
The investigation of droplet and nanoparticle formation in spray flame synthesis requires sophisticated measurement techniques, as often both are present simultaneously. Here, wide-angle light scattering (WALS) was applied to determine droplet and nanoparticle size distributions in spray flames from a standardized liquid-fed burner setup. Solvents of pure ethanol and a mixture of ethanol and titanium isopropoxide, incepting nanoparticle synthesis, were investigated. A novel method for the evaluation of scattering data from droplets between 2 µm and 50 µm was successfully implemented. Applying this, we could reveal the development of a bimodal droplet size distribution for the solvent/precursor system, probably induced by droplet micro-explosions. To determine nanoparticle size distributions, an appropriate filter and the averaging of single-shot data were applied to ensure scattering from a significant amount of nanoparticles homogeneously distributed in the measurement volume. From the multivariate analysis of the scattering data, the presence of spherical particles and fractal aggregates was derived, which was confirmed by analysis of transmission electron microscopy images. Monte Carlo simulations allowed determining the distribution parameters for both morphological fractions in three heights above the burner. The results showed relatively wide size distributions, especially for the spherical fraction, and indicated an ongoing sintering, from fractal to spherical particles. Full article
(This article belongs to the Special Issue Flame Synthesis and Characterization of Oxide Nanoparticles)
Show Figures

Figure 1

12 pages, 1689 KiB  
Article
Development of Highly Sensitive Raman Spectroscopy for Subnano and Single-Atom Detection
by Yuansen Tang, Naoki Haruta, Akiyoshi Kuzume and Kimihisa Yamamoto
Molecules 2021, 26(16), 5099; https://doi.org/10.3390/molecules26165099 - 23 Aug 2021
Cited by 7 | Viewed by 3782
Abstract
Direct detection and characterisation of small materials are fundamental challenges in analytical chemistry. A particle composed of dozens of metallic atoms, a so-called subnano-particle (SNP), and a single-atom catalyst (SAC) are ultimate analysis targets in terms of size, and the topic is now [...] Read more.
Direct detection and characterisation of small materials are fundamental challenges in analytical chemistry. A particle composed of dozens of metallic atoms, a so-called subnano-particle (SNP), and a single-atom catalyst (SAC) are ultimate analysis targets in terms of size, and the topic is now attracting increasing attention as innovative frontier materials in catalysis science. However, characterisation techniques for the SNP and SAC adsorbed on substrates requires sophisticated and large-scale analytical facilities. Here we demonstrate the development of an ultrasensitive, laboratory-scale, vibrational spectroscopic technique to characterise SNPs and SACs. The fine design of nano-spatial local enhancement fields generated by the introduction of anisotropic stellate-shaped signal amplifiers expands the accessibility of small targets on substrates into evanescent electromagnetic fields, achieving not only the detection of isolated small targets but also revealing the effects of intermolecular/interatomic interactions within the subnano configuration under actual experimental conditions. Such a development of “in situ subnano spectroscopy” will facilitate a comprehensive understanding of subnano and SAC science. Full article
Show Figures

Graphical abstract

22 pages, 4400 KiB  
Article
Encapsulation of Hydrophobic Drugs in Shell-by-Shell Coated Nanoparticles for Radio—and Chemotherapy—An In Vitro Study
by Stefanie Klein, Tobias Luchs, Andreas Leng, Luitpold V. R. Distel, Winfried Neuhuber and Andreas Hirsch
Bioengineering 2020, 7(4), 126; https://doi.org/10.3390/bioengineering7040126 - 12 Oct 2020
Cited by 16 | Viewed by 4537
Abstract
Our research objective was to develop novel drug delivery vehicles consisting of TiO2 and Al2O3 nanoparticles encapsulated by a bilayer shell that allows the reversible embedment of hydrophobic drugs. The first shell is formed by covalent binding of hydrophobic [...] Read more.
Our research objective was to develop novel drug delivery vehicles consisting of TiO2 and Al2O3 nanoparticles encapsulated by a bilayer shell that allows the reversible embedment of hydrophobic drugs. The first shell is formed by covalent binding of hydrophobic phosphonic acid at the metal oxide surface. The second shell composed of amphiphilic sodium dodecylbenzenesulfonate emerges by self-aggregation driven by hydrophobic interactions between the dodecylbenzene moiety and the hydrophobic first shell. The resulting double layer provides hydrophobic pockets suited for the intake of hydrophobic drugs. The nanoparticles were loaded with the anticancer drugs quercetin and 7-amino-4-methylcoumarin. Irradiation with X-rays was observed to release the potential anticancer drugs into the cytoplasm. In Michigan Cancer Foundation (MCF)-10 A cells, quercetin and 7-amino-4-methylcoumarin acted as antioxidants by protecting the non-tumorigenic cells from harmful radiation effects. In contrast, these agents increased the reactive oxygen species (ROS) formation in cancerous MCF-7 cells. Quercetin and 7-amino-4-methylcoumarin were shown to induce apoptosis via the mitochondrial pathway in cancer cells by determining an increase in TUNEL-positive cells and a decrease in mitochondrial membrane potential after irradiation. After X-ray irradiation, the survival fraction of MCF-7 cells with drug-loaded nanoparticles considerably decreased, which demonstrates the excellent performance of the double-layer stabilized nanoparticles as drug delivery vehicles. Full article
(This article belongs to the Collection Nanoparticles for Therapeutic and Diagnostic Applications)
Show Figures

Graphical abstract

14 pages, 1895 KiB  
Article
Effect of RhOx/CeO2 Calcination on Metal-Support Interaction and Catalytic Activity for N2O Decomposition
by Verónica Rico-Pérez and Agustin Bueno-López
Appl. Sci. 2014, 4(3), 468-481; https://doi.org/10.3390/app4030468 - 22 Sep 2014
Cited by 17 | Viewed by 7861
Abstract
The effect of the calcination conditions on the catalytic activity for N2O decomposition of 2.5% RhOx/CeO2 catalysts has been investigated. Ramp and flash calcinations have been studied (starting calcinations at 25 or 250/350 °C, respectively) both for cerium nitrate and [...] Read more.
The effect of the calcination conditions on the catalytic activity for N2O decomposition of 2.5% RhOx/CeO2 catalysts has been investigated. Ramp and flash calcinations have been studied (starting calcinations at 25 or 250/350 °C, respectively) both for cerium nitrate and ceria-impregnated rhodium nitrate decomposition. The cerium nitrate calcination ramp has neither an effect on the physico-chemical properties of ceria, observed by XRD, Raman spectroscopy and N2 adsorption, nor an effect on the catalysts performance for N2O decomposition. On the contrary, flash calcination of rhodium nitrate improved the catalytic activity for N2O decomposition. This is attributed to the smaller size of RhOx nanoparticles obtained (smaller than 1 nm) which allow a higher rhodium oxide-ceria interface, favoring the reducibility of the ceria surface and stabilizing the RhOx species under reaction conditions. Full article
(This article belongs to the Special Issue Feature Papers)
Show Figures

Graphical abstract

Back to TopTop