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Abstract: Silicone rubbers are a good choice for shielding materials because of having elastic and
attenuating properties as well as cost-effectiveness. Thus, the aim of this study was to prepare
ground-breaking silicone rubber samples by adding WO3-nanoparticles and testing the performance
of their radiation shielding ability against Cs-137, Co-60, and Am-241 gamma energy. Increasing
the concentration of WO3 nanoparticles in silicone rubber (SR) led to decreasing the half-value
layer (HVL) and mean free path (MFP) values determined for the samples tested. Furthermore,
the values of MFP and HVL upsurged according to the enhancement of the photon energy. It is
noteworthy that the prepared silicone rubber (SR) systems with 50 and 60 wt% concentrations of
WO3-nanoparticles displayed lower HVL than the Bi2O3-containing silicone rubber (SR) systems.
In the same way, studied silicone rubber SR-W60 represented the lowest HVL comprising iron ore
containing silicone rubber.

Keywords: silicone rubber; WO3-nanoparticles; Cs-137; Co-60; Am-241

1. Introduction

As technology is improved and industries develop, there is an increased use in the
number of machines that use radiation. Radiation-harnessing technologies are present in
energy generation, medicine, agriculture, food processing, and more [1–3]. In the field of
medicine, for example, radiation is used in the form of X-rays for medical imaging as well
as in radiotherapy to eliminate cancer cells. As the benefits of ionizing radiation become
more apparent, it is also necessary to consider the possible harmful effects of being exposed
to high-energy photons. If the human body is exposed to large amounts of radiation,
severe side effects can occur such as cancer development. To avoid all possible harmful
effects of ionizing radiation, radiation shields are commonly placed between the source of
high-energy photons and the human body [4–7].

Lead is the oldest and most widely known shielding material, in the form of lead
aprons, for instance. Despite lead being an effective shield, it is naturally toxic to humans
and the environment. Thus, it is preferable to find alternatives to minimize its use, espe-
cially in certain fields such as medicine, where some patients are more sensitive to lead
toxicity [8–12].

Polymers are an alternative material to lead for radiation shielding applications. They
are desirable shields due to their flexibility, low cost, lightweight, workability, chemical
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stability, etc. All of these properties make polymers effective absorbers of gamma rays.
Previous studies have investigated adding PbO and other filler materials such as zinc borate
to determine the potential of these rubbers in radiation shielding applications [13–15].

To improve the shielding ability of the rubbers, additives can be introduced into the
polymers, such as bismuth, tungsten, and antimony powder. These additives increase the
probability of the shield interacting with the incoming photons, enhancing the amount of
radiation that is attenuated [16–18]. For example, Belgin et al. prepared a low-density poly-
mer with PbO and WO3 and found that the polymer exhibits highly desirable characteristics
when shielding against gamma rays [19]. Hassan et al. fabricated an epoxy matrix adding
30% weight of tungsten borides WB and WB2 microparticles for the purpose of radiation
shielding. Attaining results showed that the combination of WB and WB2 microparticles
to the epoxy matrix amended the gamma-ray shielding ability, and, considering gamma
radiation shielding ability, the EP30WB2 micro composite showed higher attenuation re-
sults than the EP30WB composite [20]. Hashemi et al. displayed that the radio-opacity of
GO-Pb3O4 containing epoxy increased with the increase in containing filler as well as its
thicknesses [21]. Nazlıcan et al. fabricated an innovative, non-toxic, and low-cost epoxy
polymer matrix with Yahyali Stone (YS) natural stone powder for gamma-ray shielding ap-
plications. Fe2O3 (75.28 wt%), SiO2 (17.21 wt%), and Al2O3 (4.24 wt%) are the components
of the Yahyali Stone (YS) natural stone. Obtained results indicated that Epoxy/YS com-
posites shielding capacity rises according to the enhancement of YS’s amount specifically
consisting of Fe2O3. The Epoxy/YS composites are good for a low energetic gamma-ray
utilization field such as nuclear medicine [22]. Nanomaterials have also been shown to
provide an additional improvement over conventional micromaterials, as a smaller particle
size typically correlates with greater attenuation. For example, Mahmoud et al. prepared
high-density polymer composites with lead oxide nanoparticles, comparing them with
using traditional bulk lead [23]. Tungsten specifically has higher attenuation coefficients
than other common additives, making it a good powder to introduce to polymers.

Thus, this study will investigate the radiation shielding properties of silicone rubber
with nano-WO3 to determine its viability in radiation shielding applications.

2. Materials and Method

New flexible samples were prepared to test their shielding ability. The samples were a
mixture of silicone rubber (with a hardener) and tungsten oxide. Liquid poly(dimethylsiloxane)
with chemical structure shown in Figure 1 was purchased and has the same properties that
were previously studied [24–26]. Tungsten oxide has all its particles in the nano size, where
the average particle size was 40 nm from TEM results. The TEM (transmission electron mi-
croscope) was applied for some powder WO3 nanoparticles as shown in Figure 2. Silicone
rubber was mixed with tungsten oxide in proportions as shown in Table 1 in the traditional
way, where the mixture was placed in a bowl and an electric mixer was used for 10 min
until it became homogenous, so that the samples were stirred well and the samples were
placed in cylindrical molds with a diameter of 8 cm. After preparation, the samples were
left to dry for 24 h until the samples became flexible, as shown in Figure 3.

Table 1. Chemical composition, densities, and the codes of the prepared flexible samples.

Codes
Chemical Compositions (wt%)

Density (g/cm3)
Silicone Rubber WO3-Nanoparticles

SR-W0 100 0 1.180 ± 0.008
SR-W10 90 10 1.293 ± 0.011
SR-W20 80 20 1.421 ± 0.008
SR-W30 70 30 1.580 ± 0.009
SR-W40 60 40 1.779 ± 0.007
SR-W50 50 50 2.032 ± 0.008
SR-W60 40 60 2.375 ± 0.009
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The mechanical and morphological properties were studied with the same devices
taken from the literature data [24], where the tensile strength and Young’s modulus were
evaluated for the prepared SR-WO3 samples using an electronic tensile testing machine
(model 1425, Germany), according to standard techniques with ASTM D412 as well as a
scanning electron microscope (SEM2) of SEM-T200, JEOT model (Akishima, Japan), which
was used to scan the prepared samples under operating voltage 20 keV and magnification
number around 35,000.

The samples were exposed to three radioactive sources (Cs-137, Co-60, Am-241) and
the intensity of incident radiation in the presence (I) and absence of the sample (I0) were
measured using HPGe detector [27,28]. The sample is placed between the radioactive
source and the detector at a suitable point as shown in Figure 4. The sample was measured
for a different thickness from the same sample with the fixed measurement time. By
determining the intensity in both cases (the presence and absence of silicone rubber) and
calculating the thickness of the sample and by applying the Lambert-Beer’s law, the linear
attenuation coefficient (LAC) was determined by the following equation [29,30].

LAC =
1
x

ln
I0

I
(1)

where ‘x’ represents the thickness of the silicone rubber sample. HVL and MFP are impor-
tant parameters describing the thickness of the sample in which the radiation intensity is
halved and the distance of radiation travels within that thickness without any interaction,
respectively, and given by the following equations [31].

HVL =
Ln(2)
LAC

, MFP =
1

LAC
(2)

Materials 2022, 15, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 4. The illustration setup of the experimental work. 

3. Results and Discussion 
The tensile strength (TS, MPa) of the prepared samples was calculated in addition to 

Young’s modulus (YM, MPa). It was clear from the results as shown in Figure 5 that 
adding WO3 nanoparticles positively affected the tensile strength and Young’s modulus, 
where the tensile strength of silicone rubber ranged from 3.975 MPa in the absence of 
additives (SR-W0), while it was 4.295 when 60% of nanoparticles was added (SR-W60). 
Similarly, the results of Young’s modulus were positive with the increase in WO3 
nanoparticles as shown in the figure, and this was reported in other papers, indicating 
that the tungsten nanoparticles positively affect the mechanical properties when added to 
the polymer in general [32,33]. 

Figure 4. The illustration setup of the experimental work.



Materials 2022, 15, 5706 5 of 13

3. Results and Discussion

The tensile strength (TS, MPa) of the prepared samples was calculated in addition to
Young’s modulus (YM, MPa). It was clear from the results as shown in Figure 5 that adding
WO3 nanoparticles positively affected the tensile strength and Young’s modulus, where
the tensile strength of silicone rubber ranged from 3.975 MPa in the absence of additives
(SR-W0), while it was 4.295 when 60% of nanoparticles was added (SR-W60). Similarly,
the results of Young’s modulus were positive with the increase in WO3 nanoparticles as
shown in the figure, and this was reported in other papers, indicating that the tungsten
nanoparticles positively affect the mechanical properties when added to the polymer in
general [32,33].
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an increase in the filler percentage, some aggregates of nanoparticles were found inside 
the polymer. In Figure 6, the nanoparticles were clear without any aggregates when mixed 
with 30% WO3 (SR-W30), while during scanning the sample with the highest percentage 
of (SR-W60), some aggregates were found, but it did not affect its mechanical and 
attenuation properties, as shown below. 

Figure 5. The tensile strength (TS) and young modulus of the SR-WO3 systems.

A scanning electron microscope (SEM-IT 200) was used to scan the prepared samples,
and it was found that the nanoparticles kept their size inside the silicone rubber, but with
an increase in the filler percentage, some aggregates of nanoparticles were found inside
the polymer. In Figure 6, the nanoparticles were clear without any aggregates when mixed
with 30% WO3 (SR-W30), while during scanning the sample with the highest percentage of
(SR-W60), some aggregates were found, but it did not affect its mechanical and attenuation
properties, as shown below.
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Figure 6. SEM images of (a) SR-W0, (b) SR-W30 and (c) SR-W60.

The fractional transmission (ln(I/I0)) versus the thickness (cm) of silicone rubber (SR)
systems with different concentrations of WO3-nanoparticles for energy 0.0595, 0.662, 1.173,
and 1.333 MeV have been publicized. The slope representing the most fitting straight line
considering these data are of utmost importance as LAC has been displayed through the
slope of the line obtained after scheming the fractional transition values ln(I/I0) versus
thickness of the absorbing materials (considering Lambert_Beer’s law). Herein, an increase
in the energy causes an increase in the I/I0 and this means that the photons with high energy
can penetrate the prepared silicone rubber easier than the photons with low energy. The
negative value of the slope revealed that the transmitting value declined according to the
enhancement of the absorbers’ thickness. A typical figure (Figure 7) has been presented here
with the most fitting straight-line view with the slope value of 5.50126 denoting the linear
attenuation coefficient (cm−1) at 0.06 MeV. It is most convenient to attain mass attenuation
coefficient (MAC) through the normalization of LAC by the density of that material. MAC
has been found to be 2.33 gm/cm2 through normalizing the LAC (5.50126 cm−1) by the
density (2.37 gm/cm3) of the prepared silicone rubber (SR-W60), and it is notable that the
I/I0 has an inverse relationship, meaning I/I0 decreases with increasing the thickness of
the absorbing material. Thus, it is better to prepare a sample with high thickness in order
to get materials with good shielding properties. Hence, these prepared silicone rubber
(SR-W60) samples represented in this work showed that silicone rubber (SR-W60) with the
highest density (2.37 gm/cm3) displayed the superior MAC vale. It is clear from Figure 8.
that with the increase in WO3 concentration on the prepared silicone rubber (SR) hence the
value of fractional transition ln(I/I0) decreases, which demonstrates that the enhancement
of the amount of WO3 boosts the attenuation performance of the prepared silicone rubber
(SR) samples.
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tion on prepared silicone rubber system for thickness of 1.33 cm at energy 0.662 MeV.

In this study, prepared silicone rubber (SR) containing 0, 5, 10, 30, 40, 50, and 60 wt%
concentrations of WO3-nanoparticles have been examined to get the values of linear attenu-
ation coefficient (LAC), mass attenuation coefficient (MAC), half-value layer (HVL), and
mean free path (MFP). Depicted figures (in Figures 9–12) assessed the values of LAC, MAC,
HVL, and MFP of the prepared silicone rubber (SR) dependent upon the photon energies,
correspondingly. Prepared silicone rubber (SR-W50) has shown that the value of LAC
(0.13 cm−1) at the energy of 1.173 MeV whereas the value of LAC (3.9 cm−1) at the energy of
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0.060 MeV which is 31 times higher (Figure 9). This is a clear clarification of the effect of the
energy on the LAC for the prepared silicone rubber systems. Increasing the concentration
of WO3 nanoparticles in silicone rubber (SR) led to maintaining the downward direction
of SR-W0 > SR-W10 > SR-W20 > SR-W30 > SR-W40> SR-W50 > SR-W60 for the obtained
values of the HVL and MFP of the current study.
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These results show that the radiation shielding ability of any substance has an inverse
dependence on the density of the prepared silicone rubber (SR). Consequently, the highest
density holding silicone rubber (SR-W60) has provided the maximum shielding competence
against gamma photons compared to the rest of the prepared silicone rubber (SR) systems
which specify the effect of WO3 content or the density on the LAC. Obtained figures
show that the values of MFP and HVL v upsurge according to the enhancement of the
photon energy.

Figure 13 represents the comparison of HVL between the different concentrations
of WO3-containing silicone rubber (SR-W0) system with the numerous concentrations of
Bi2O3-containing silicone rubber (SR-0) systems [24] at energy 0.662 MeV. In Figure 13,
the symbol indicates that SR-5m (micro-sized Bi2O3 particle) and SR-5n (nano-sized Bi2O3
particle), etc.
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Figure 13. The comparison of HVL between the WO3-containing silicone rubber (SR-W0) systems
with Bi2O3-containing silicone rubber (SR-0) systems at energy 0.662 MeV.

0, 10, 20, 30, 40, 50, and 60 wt% of WO3-nanoparticles contaminated silicone rubber
(SR) systems (present study) have been compared to the silicone rubber (SR) systems
with 0, 5, 10, 30, and 30 wt% of micro and nano sizes Bi2O3 (literature data) fabricated by
Abbas et al. [24]. In Figure 13, the blue colored spheres indicate the HVL values of the
compared samples (taken from the literature data [24]) at 0.0662 MeV. This figure displays
that SR-W50 and SR-W60 have lower HVL than the Bi2O3-containing silicone rubber (SR)
systems. The comparison of HVL between the WO3-containing silicone rubber (SR-W0)
system with iron ore-containing silicone rubber (Sdt-0) systems [26] has been presented
in Figure 14 for energy 0.662 MeV. In Figure 14, red colored balls indicate the value of
compared samples’ (literature data—[26]) HVL at energy 0.0662 MeV. Silicone rubber SR-
W60 (prepared sample) has represented the lowest HVL comprising pure and up to 67 wt%
of iron ore added to silicone rubber (literature data—[26]).
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Figure 14. The comparison of HVL between the WO3-containing silicone rubber (SR-W0) system
with iron ore-containing silicone rubber (Sdt-0) systems at energy 0.662 MeV.

4. Conclusions

Silicone rubber samples have been prepared by adding 0, 10, 20, 30, 40, 50, and
60 wt% of WO3-nanoparticles. The attained values of linear attenuation coefficient (LAC),
mass attenuation coefficient (MAC), half-value layer (HVL), and mean free path (MFP)
showed that enhancing the number of WO3-nanoparticles on silicone rubber boosts its
attenuation efficiency against gamma rays. The highest density holding silicone rubber
(SR-W60) provided the maximum shielding competence against gamma photons compared
to the rest of the prepared silicone rubber (SR) systems Moreover, the values of MFP and
HVL upsurged according to the enhancement of the photon energy. It is notable that at
energy 0.0662 MeV, the prepared silicone rubber samples SR-W50 and SR-W60 displayed
lower HVL than the Bi2O3-containing silicone rubber (SR) systems. In the same way,
studied silicone rubber SR-W60 represented the lowest HVL compared with silicone rubber
containing 67% iron particles at 0.0662 MeV.
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