Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = submillimeter astronomy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2086 KB  
Review
Jets in Low-Mass Protostars
by Somnath Dutta
Universe 2025, 11(10), 333; https://doi.org/10.3390/universe11100333 - 9 Oct 2025
Viewed by 14
Abstract
Jets and outflows are key components of low-mass star formation, regulating accretion and shaping the surrounding molecular clouds. These flows, traced by molecular species at (sub)millimeter wavelengths (e.g., CO, SiO, SO, H2CO, and CH3OH) and by atomic, ionized, and [...] Read more.
Jets and outflows are key components of low-mass star formation, regulating accretion and shaping the surrounding molecular clouds. These flows, traced by molecular species at (sub)millimeter wavelengths (e.g., CO, SiO, SO, H2CO, and CH3OH) and by atomic, ionized, and molecular lines in the infrared (e.g., H2, [Fe II], [S I]), originate from protostellar accretion disks deeply embedded within dusty envelopes. Jets play a crucial role in removing angular momentum from the disk, thereby enabling continued mass accretion, while directly preserving a record of the protostar’s outflow history and potentially providing indirect insights into its accretion history. Recent advances in high-resolution, high-sensitivity observations, particularly with the James Webb Space Telescope (JWST) in the infrared and the Atacama Large Millimeter/submillimeter Array (ALMA) at (sub)millimeter wavelengths, have revolutionized studies of protostellar jets and outflows. These instruments provide complementary views of warm, shock-excited gas and cold molecular component of the jet–outflow system. In this review, we discuss the current status of observational studies that reveal detailed structures, kinematics, and chemical compositions of protostellar jets and outflows. Recent analyses of mass-loss rates, velocities, rotation, molecular abundances, and magnetic fields provide critical insights into jet launching mechanisms, disk evolution, and the potential formation of binary systems and planets. The synergy of JWST’s infrared sensitivity and ALMA’s high-resolution imaging is advancing our understanding of jets and outflows. Future large-scale, high-resolution surveys with these facilities are expected to drive major breakthroughs in outflow research. Full article
(This article belongs to the Special Issue Magnetic Fields and Activity in Stars: Origins and Evolution)
Show Figures

Figure 1

15 pages, 606 KB  
Review
Measurements and Evaluations of the Atmospheric Transparency at Short Millimeter Wavelengths at Candidate Sites for Millimeter- and Sub-Millimeter-Wave Telescopes
by Igor I. Zinchenko, Alexander V. Lapinov, Vyacheslav F. Vdovin, Peter M. Zemlyanukha and Tatiana A. Khabarova
Appl. Sci. 2023, 13(21), 11706; https://doi.org/10.3390/app132111706 - 26 Oct 2023
Cited by 6 | Viewed by 2373
Abstract
Radio astronomical observations at millimeter and submillimeter wavelengths are a very important tool for astrophysical research. However, there is a huge area in northeastern Eurasia, including the whole Russian territory, which lacks sufficiently large radio telescopes effectively operating at these wavelengths. In this [...] Read more.
Radio astronomical observations at millimeter and submillimeter wavelengths are a very important tool for astrophysical research. However, there is a huge area in northeastern Eurasia, including the whole Russian territory, which lacks sufficiently large radio telescopes effectively operating at these wavelengths. In this review, we describe our long-term efforts to find suitable sites for such radio telescopes in this area, that is, sites with good atmospheric transparency at millimeter and submillimeter waves. We describe methods and instruments used for measurements and evaluations of the atmospheric opacity. They include special radiometric systems, which are used for estimations of the atmospheric opacity in the transparency windows from the sky brightness measurements. Evaluation of the precipitable water vapor from such measurements by the artificial neural network is discussed. Other approaches use water vapor radiometers, global atmospheric models and signals of the Global Navigation Satellite Systems. To date, long-term radiometric monitoring has been performed at several candidate sites, and atmospheric conditions for many sites have been evaluated using global atmospheric models. Several sites with the best atmospheric transparency at millimeter and submillimeter wavelengths have been selected. They can be effectively used for astronomical observations, at least in the major atmospheric transparency windows at 1.3 mm and 0.85 mm. In general, the results show that northeastern Eurasia is a promising area for submillimeter astronomy. These results can also be used for space communications and radar systems. Full article
(This article belongs to the Special Issue Advanced Observation for Geophysics, Climatology and Astronomy)
Show Figures

Figure 1

15 pages, 8515 KB  
Article
Study on the Fabrication Process of X-ray Focusing Mirrors
by Qiuyan Liao, Fei Ding, Zhigao Chen, Duo Li and Bo Wang
Micromachines 2023, 14(9), 1666; https://doi.org/10.3390/mi14091666 - 26 Aug 2023
Cited by 9 | Viewed by 2490
Abstract
The eXTP (enhanced X-ray Timing and Polarization) satellite is a prominent X-ray astronomy satellite designed primarily for conducting deep space X-ray astronomical observations. The satellite’s scientific payload consists of X-ray focusing mirrors. In order to fulfill the requirements of weight reduction and enhanced [...] Read more.
The eXTP (enhanced X-ray Timing and Polarization) satellite is a prominent X-ray astronomy satellite designed primarily for conducting deep space X-ray astronomical observations. The satellite’s scientific payload consists of X-ray focusing mirrors. In order to fulfill the requirements of weight reduction and enhanced effective area, the thickness of mirrors is reduced to the sub-millimeter range and a multi-layer nested structure is employed. Manufacturing mirrors poses a significant challenge to both their quality and efficiency. The present research investigates the optimal replication process for mandrel ultraprecision machining, polishing, coating, electroforming nickel, and demolding. It analyzes the factors contributing to the challenging separation and the inability to release the mirror shells. Additionally, an automatic demolding device is developed, and the X-ray performance of the replication mirrors is verified. The fabrication process flow of the mirrors was initially introduced. To ensure the easy release of the mirror shells from the mandrels, a layer of diamond-like carbon (DLC) was applied as a release layer between the Au and NiP alloy. The adhesion strength of Au-C was found to be significantly lower than that of Au-NiP, as demonstrated by both molecular dynamic simulation and tensile testing. The development of an automatic demolding device with force feedback has been successfully completed. The reduction in the half-power diameter (HPD) of the mirror from 48 inches to 25 inches is an improvement that surpasses the production target. Full article
Show Figures

Figure 1

9 pages, 8999 KB  
Proceeding Paper
Bayesian and Machine Learning Methods in the Big Data Era for Astronomical Imaging
by Fabrizia Guglielmetti, Philipp Arras, Michele Delli Veneri, Torsten Enßlin, Giuseppe Longo, Lukasz Tychoniec and Eric Villard
Phys. Sci. Forum 2022, 5(1), 50; https://doi.org/10.3390/psf2022005050 - 15 Feb 2023
Viewed by 1899
Abstract
The Atacama large millimeter/submillimeter array with the planned electronic upgrades will deliver an unprecedented number of deep and high resolution observations. Wider fields of view are possible with the consequential cost of image reconstruction. Alternatives to commonly used applications in image processing have [...] Read more.
The Atacama large millimeter/submillimeter array with the planned electronic upgrades will deliver an unprecedented number of deep and high resolution observations. Wider fields of view are possible with the consequential cost of image reconstruction. Alternatives to commonly used applications in image processing have to be sought and tested. Advanced image reconstruction methods are critical to meet the data requirements needed for operational purposes. Astrostatistics and astroinformatics techniques are employed. Evidence is given that these interdisciplinary fields of study applied to synthesis imaging meet the Big Data challenges and have the potential to enable new scientific discoveries in radio astronomy and astrophysics. Full article
Show Figures

Figure 1

12 pages, 441 KB  
Article
Spectral Line VLBI Studies Using the ngEHT
by Dong-Jin Kim and Vincent Fish
Galaxies 2023, 11(1), 10; https://doi.org/10.3390/galaxies11010010 - 6 Jan 2023
Cited by 3 | Viewed by 2494
Abstract
Spectroscopy in the mm/sub-mm wavelength range is a powerful tool to study the gaseous medium in various astrophysical environments. The next generation Event Horizon Telescope (ngEHT) equipped with a wide-bandwidth backend system has great potential for science using high angular resolution spectroscopy. Spectral [...] Read more.
Spectroscopy in the mm/sub-mm wavelength range is a powerful tool to study the gaseous medium in various astrophysical environments. The next generation Event Horizon Telescope (ngEHT) equipped with a wide-bandwidth backend system has great potential for science using high angular resolution spectroscopy. Spectral line VLBI studies using the ngEHT will enable us to scrutinize compact astrophysical objects obscured by an optically thick medium on unprecedented angular scales. However, the capabilities of ngEHT for spectroscopy and specific scientific applications have not been properly envisioned. In this white paper, we briefly address science cases newly achievable via spectral line VLBI observations in the mm/sub-mm wavelength ranges, and suggest technical requirements to facilitate spectral line VLBI studies in the ngEHT era. Full article
Show Figures

Figure 1

8 pages, 655 KB  
Article
Millimeter/Submillimeter VLBI with a Next Generation Large Radio Telescope in the Atacama Desert
by Kazunori Akiyama, Jens Kauffmann, Lynn D. Matthews, Kotaro Moriyama, Shoko Koyama and Kazuhiro Hada
Galaxies 2023, 11(1), 1; https://doi.org/10.3390/galaxies11010001 - 20 Dec 2022
Cited by 11 | Viewed by 3178
Abstract
The proposed next generation Event Horizon Telescope (ngEHT) concept envisions the imaging of various astronomical sources on scales of microarcseconds in unprecedented detail with at least two orders of magnitude improvement in the image dynamic ranges by extending the Event Horizon Telescope (EHT). [...] Read more.
The proposed next generation Event Horizon Telescope (ngEHT) concept envisions the imaging of various astronomical sources on scales of microarcseconds in unprecedented detail with at least two orders of magnitude improvement in the image dynamic ranges by extending the Event Horizon Telescope (EHT). A key technical component of ngEHT is the utilization of large aperture telescopes to anchor the entire array, allowing the connection of less sensitive stations through highly sensitive fringe detections to form a dense network across the planet. Here, we introduce two projects for planned next generation large radio telescopes in the 2030s on the Chajnantor Plateau in the Atacama desert in northern Chile, the Large Submillimeter Telescope (LST) and the Atacama Large Aperture Submillimeter Telescope (AtLAST). Both are designed to have a 50-meter diameter and operate at the planned ngEHT frequency bands of 86, 230 and 345 GHz. A large aperture of 50 m that is co-located with two existing EHT stations, the Atacama Large Millimeter/Submillimeter Array (ALMA) and the Atacama Pathfinder Experiment (APEX) Telescope in the excellent observing site of the Chajnantor Plateau, will offer excellent capabilities for highly sensitive, multi-frequency, and time-agile millimeter very long baseline interferometry (VLBI) observations with accurate data calibration relevant to key science cases of ngEHT. In addition to ngEHT, its unique location in Chile will substantially improve angular resolutions of the planned Next Generation Very Large Array in North America or any future global millimeter VLBI arrays if combined. LST and AtLAST will be a key element enabling transformative science cases with next-generation millimeter/submillimeter VLBI arrays. Full article
Show Figures

Figure 1

7 pages, 995 KB  
Proceeding Paper
Bayesian Reconstruction through Adaptive Image Notion
by Fabrizia Guglielmetti, Eric Villard and Ed Fomalont
Proceedings 2019, 33(1), 21; https://doi.org/10.3390/proceedings2019033021 - 5 Dec 2019
Cited by 2 | Viewed by 1488
Abstract
A stable and unique solution to the ill-posed inverse problem in radio synthesis image analysis is sought employing Bayesian probability theory combined with a probabilistic two-component mixture model. The solution of the ill-posed inverse problem is given by inferring the values of model [...] Read more.
A stable and unique solution to the ill-posed inverse problem in radio synthesis image analysis is sought employing Bayesian probability theory combined with a probabilistic two-component mixture model. The solution of the ill-posed inverse problem is given by inferring the values of model parameters defined to describe completely the physical system arised by the data. The analysed data are calibrated visibilities, Fourier transformed from the ( u , v ) to image planes. Adaptive splines are explored to model the cumbersome background model corrupted by the largely varying dirty beam in the image plane. The de-convolution process of the dirty image from the dirty beam is tackled in probability space. Probability maps in source detection at several resolution values quantify the acquired knowledge on the celestial source distribution from a given state of information. The information available are data constrains, prior knowledge and uncertain information. The novel algorithm has the aim to provide an alternative imaging task for the use of the Atacama Large Millimeter/Submillimeter Array (ALMA) in support of the widely used Common Astronomy Software Applications (CASA) enhancing the capabilities in source detection. Full article
Show Figures

Figure 1

Back to TopTop