Spectral Line VLBI Studies Using the ngEHT
Abstract
1. Introduction
2. Molecular Maser Lines
2.1. Circumstellar Envelope of AGB Stars
2.2. Star-Forming Regions
2.3. Circumnuclear Gas of AGNs
3. Atomic Maser Lines
3.1. Post-AGB Stars and Pre-Planetary Nebulae
3.2. Ultra-Compact H II Regions of Massive Stars
4. Molecular Absorption Lines
4.1. Gravitationally Lensed Blazars
4.2. Circumnuclear Gas in AGNs
5. Technical Overview for Spectroscopy
5.1. Spectral Line Sensitivity
5.2. Frequency Coverage
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doeleman, S.; Blackburn, L.; Dexter, J.; Gomez, J.L.; Johnson, M.D.; Palumbo, D.C.; Weintroub, J.; Farah, J.R.; Fish, V.; Loinard, L.; et al. Studying Black Holes on Horizon Scales with VLBI Ground Arrays. Proc. Bull. Am. Astron. Soc. 2019, 51, 256. [Google Scholar]
- Fish, V.; Alef, W.; Anderson, J.; Asada, K.; Baudry, A.; Broderick, A.; Carilli, C.; Colomer, F.; Conway, J.; Dexter, J.; et al. High-Angular-Resolution and High-Sensitivity Science Enabled by Beamformed ALMA. arXiv 2013, arXiv:1309.3519. [Google Scholar]
- Tilanus, R.P.J.; Krichbaum, T.P.; Zensus, J.A.; Baudry, A.; Bremer, M.; Falcke, H.; Giovannini, G.; Laing, R.; van Langevelde, H.J.; Vlemmings, W.; et al. Future mmVLBI Research with ALMA: A European vision. arXiv 2014, arXiv:1406.4650. [Google Scholar]
- Asada, K.; Kino, M.; Honma, M.; Hirota, T.; Lu, R.S.; Inoue, M.; Sohn, B.W.; Shen, Z.Q.; Ho, P.T.P.; Akiyama, K.; et al. White Paper on East Asian Vision for mm/submm VLBI: Toward Black Hole Astrophysics down to Angular Resolution of 1~R S. arXiv 2017, arXiv:1705.04776. [Google Scholar]
- Matthews, L.D.; Crew, G.B.; Doeleman, S.S.; Lacasse, R.; Saez, A.F.; Alef, W.; Akiyama, K.; Amestica, R.; Anderson, J.M.; Barkats, D.A.; et al. The ALMA Phasing System: A Beamforming Capability for Ultra-high-resolution Science at (Sub)Millimeter Wavelengths. Publ. Astron. Soc. Pac. 2018, 130, 015002. [Google Scholar] [CrossRef]
- Litvak, M.M. Coherent molecular radiation. Annu. Rev. Astron. Astrophys. 1974, 12, 97–112. [Google Scholar] [CrossRef]
- Reid, M.J.; Moran, J.M. Masers. Annu. Rev. Astron. Astrophys. 1981, 19, 231–276. [Google Scholar] [CrossRef]
- Elitzur, M. Astronomical masers. Annu. Rev. Astron. Astrophys. 1992, 30, 75–112. [Google Scholar] [CrossRef]
- Trotter, A.S.; Greenhill, L.J.; Moran, J.M.; Reid, M.J.; Irwin, J.A.; Lo, K.Y. Water Maser Emission and the Parsec-Scale Jet in NGC 3079. Astrophys. J. 1998, 495, 740–748. [Google Scholar] [CrossRef]
- Lo, K.Y. Mega-Masers and Galaxies. Annu. Rev. Astron. Astrophys. 2005, 43, 625–676. [Google Scholar] [CrossRef]
- Gray, M.D.; Baudry, A.; Richards, A.M.S.; Humphreys, E.M.L.; Sobolev, A.M.; Yates, J.A. The physics of water masers observable with ALMA and SOFIA: Model predictions for evolved stars. Mon. Not. R. Astron. Soc. 2016, 456, 374–404. [Google Scholar] [CrossRef]
- Bergman, P.; Humphreys, E.M.L. Submillimetre water masers at 437, 439, 471, and 474 GHz towards evolved stars. APEX observations and radiative transfer modelling. Astron. Astrophys. 2020, 638, A19. [Google Scholar] [CrossRef]
- Herwig, F. Evolution of Asymptotic Giant Branch Stars. Annu. Rev. Astron. Astrophys. 2005, 43, 435–479. [Google Scholar] [CrossRef]
- Höfner, S.; Olofsson, H. Mass loss of stars on the asymptotic giant branch. Mechanisms, models and measurements. Astron. Astrophys. Rev. 2018, 26, 1. [Google Scholar] [CrossRef]
- Gail, H.P.; Sedlmayr, E. Physics and Chemistry of Circumstellar Dust Shells; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-0-5119-8560-7. [Google Scholar]
- Woitke, P. Too little radiation pressure on dust in the winds of oxygen-rich AGB stars. Astron. Astrophys. 2006, 460, L9–L12. [Google Scholar] [CrossRef]
- Huang, P.S.; Lee, C.F.; Sahai, R. Evolution from Spherical AGB Wind to Multipolar Outflow in Pre-planetary Nebula IRAS 17150-3224. Astrophys. J. 2020, 889, 85. [Google Scholar] [CrossRef]
- Randall, S.K.; Trejo, A.; Humphreys, E.M.L.; Kim, H.; Wittkowski, M.; Boboltz, D.; Ramstedt, S. Discovery of a complex spiral-shell structure around the oxygen-rich AGB star GX Monocerotis. Astron. Astrophys. 2020, 636, A123. [Google Scholar] [CrossRef]
- Diamond, P.J.; Kemball, A.J.; Junor, W.; Zensus, A.; Benson, J.; Dhawan, V. Observation of a Ring Structure in SiO Maser Emission from Late-Type Stars. Astrophys. J. Lett. 1994, 430, L61. [Google Scholar] [CrossRef]
- Imai, H.; Shibata, K.M.; Marvel, K.B.; Diamond, P.J.; Sasao, T.; Miyoshi, M.; Inoue, M.; Migenes, V.; Murata, Y. The Three-dimensional Kinematics of Water Masers around the Semiregular Variable RT Virginis. Astrophys. J. 2003, 590, 460–472. [Google Scholar] [CrossRef]
- Kim, D.J.; Cho, S.H.; Yun, Y.; Choi, Y.K.; Yoon, D.H.; Kim, J.; Dodson, R.; Rioja, M.J.; Yang, H.; Yoon, S.J. Simultaneous VLBI Astrometry of H2O and SiO Masers toward the Semiregular Variable R Crateris. Astrophys. J. Lett. 2018, 866, L19. [Google Scholar] [CrossRef]
- Humphreys, E.M.L.; Yates, J.A.; Gray, M.D.; Field, D.; Bowen, G.H. Qualitative reproduction of stellar H2O maser morphology. I. Results at a single stellar phase. Astron. Astrophys. 2001, 379, 501–514. [Google Scholar] [CrossRef]
- Gong, Y.; Henkel, C.; Ott, J.; Menten, K.M.; Morris, M.R.; Keller, D.; Claussen, M.J.; Grasshoff, M.; Mao, R.Q. SiS in the Circumstellar Envelope of IRC +10216: Maser and Quasi-thermal Emission. Astrophys. J. 2017, 843, 54. [Google Scholar] [CrossRef]
- Menten, K.M.; Wyrowski, F.; Keller, D.; Kamiński, T. Widespread HCN maser emission in carbon-rich evolved stars. Astron. Astrophys. 2018, 613, A49. [Google Scholar] [CrossRef]
- Evans, N.J., II. Physical Conditions in Regions of Star Formation. Annu. Rev. Astron. Astrophys. 1999, 37, 311–362. [Google Scholar] [CrossRef]
- Cragg, D.M.; Johns, K.P.; Godfrey, P.D.; Brown, R.D. Pumping the interstellar methanol masers. Mon. Not. R. Astron. Soc. 1992, 259, 203–208. [Google Scholar] [CrossRef]
- Cragg, D.M.; Sobolev, A.M.; Godfrey, P.D. Models of class II methanol masers based on improved molecular data. Mon. Not. R. Astron. Soc. 2005, 360, 533–545. [Google Scholar] [CrossRef]
- Bartkiewicz, A.; Szymczak, M.; van Langevelde, H.J. Ring shaped 6.7 GHz methanol maser emission around a young high-mass star. Astron. Astrophys. 2005, 442, L61–L64. [Google Scholar] [CrossRef]
- Bartkiewicz, A.; Szymczak, M.; van Langevelde, H.J.; Richards, A.M.S.; Pihlström, Y.M. The diversity of methanol maser morphologies from VLBI observations. Astron. Astrophys. 2009, 502, 155–173. [Google Scholar] [CrossRef]
- Bartkiewicz, A.; Sanna, A.; Szymczak, M.; Moscadelli, L.; van Langevelde, H.J.; Wolak, P. The nature of the methanol maser ring G23.657-00.127. II. Expansion of the maser structure. Astron. Astrophys. 2020, 637, A15. [Google Scholar] [CrossRef]
- Bartkiewicz, A.; van Langevelde, H.J. Masers in star forming regions. In Proceedings of the Cosmic Masers—From OH to H0, Stellenbosch, South Africa, 29 January–3 February 2012; Booth, R.S., Vlemmings, W.H.T., Humphreys, E.M.L., Eds.; Volume 287, pp. 117–126. [Google Scholar] [CrossRef]
- Kalenskii, S.V.; Johansson, L.E.B.; Bergman, P.; Kurtz, S.; Hofner, P.; Walmsley, C.M.; Slysh, V.I. Search for Class I methanol masers in low-mass star formation regions. Mon. Not. R. Astron. Soc. 2010, 405, 613–620. [Google Scholar] [CrossRef]
- Bae, J.H.; Kim, K.T.; Youn, S.Y.; Kim, W.J.; Byun, D.Y.; Kang, H.; Oh, C.S. A Multi-epoch, Simultaneous Water and Methanol Maser Survey toward Intermediate-mass Young Stellar Objects. Astrophys. J. Suppl. 2011, 196, 21. [Google Scholar] [CrossRef]
- Moscadelli, L.; Testi, L.; Furuya, R.S.; Goddi, C.; Claussen, M.; Kitamura, Y.; Wootten, A. First results from a VLBA proper motion survey of H2O masers in low-mass YSOs: The Serpens core and RNO 15-FIR. Astron. Astrophys. 2006, 446, 985–999. [Google Scholar] [CrossRef]
- Slysh, V.I.; Kalenskiĭ, S.V.; Val’tts, I.E. Methanol Radio Emission at Millimeter Wavelengths: New Masers at 1.3 and 2.8 Millimeters. Astron. Rep. 2002, 46, 49–56. [Google Scholar] [CrossRef]
- van Kempen, T.A.; Wilner, D.; Gurwell, M. 183 GHz H2O Maser Emission Around the Low-Mass Protostar Serpens SMM1. Astrophys. J. Lett. 2009, 706, L22–L26. [Google Scholar] [CrossRef]
- Ladeyschikov, D.A.; Bayandina, O.S.; Sobolev, A.M. Online Database of Class I Methanol Masers. Astron. J. 2019, 158, 233. [Google Scholar] [CrossRef]
- Ladeyschikov, D.A.; Sobolev, A.M.; Bayandina, O.S.; Shakhvorostova, N.N. Online Database of Multiwavelength Water Masers in Galactic Star-forming Regions. Astron. J. 2022, 163, 124. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Braatz, J.A.; Condon, J.J.; Impellizzeri, C.M.V.; Lo, K.Y.; Zaw, I.; Schenker, M.; Henkel, C.; Reid, M.J.; Greene, J.E. The Megamaser Cosmology Project. III. Accurate Masses of Seven Supermassive Black Holes in Active Galaxies with Circumnuclear Megamaser Disks. Astrophys. J. 2011, 727, 20. [Google Scholar] [CrossRef]
- Pesce, D.W.; Braatz, J.A.; Condon, J.J.; Greene, J.E. Measuring Supermassive Black Hole Peculiar Motion Using H2O Megamasers. Astrophys. J. 2018, 863, 149. [Google Scholar] [CrossRef]
- Greene, J.E.; Seth, A.; Kim, M.; Läsker, R.; Goulding, A.; Gao, F.; Braatz, J.A.; Henkel, C.; Condon, J.; Lo, K.Y.; et al. Megamaser Disks Reveal a Broad Distribution of Black Hole Mass in Spiral Galaxies. Astrophys. J. Lett. 2016, 826, L32. [Google Scholar] [CrossRef]
- Claussen, M.J.; Diamond, P.J.; Braatz, J.A.; Wilson, A.S.; Henkel, C. The Water Masers in the Elliptical Galaxy NGC 1052. Astrophys. J. Lett. 1998, 500, L129–L132. [Google Scholar] [CrossRef]
- Wagner, J. 22 GHz water maser search in 37 nearby galaxies. Four new water megamasers in Seyfert 2 and OH maser/absorber galaxies. Astron. Astrophys. 2013, 560, A12. [Google Scholar] [CrossRef]
- Humphreys, E.M.L.; Greenhill, L.J.; Reid, M.J.; Beuther, H.; Moran, J.M.; Gurwell, M.; Wilner, D.J.; Kondratko, P.T. First Detection of Millimeter/Submillimeter Extragalactic H2O Maser Emission. Astrophys. J. Lett. 2005, 634, L133–L136. [Google Scholar] [CrossRef]
- Humphreys, E.M.L. Submillimeter and millimeter masers. In Proceedings of the Astrophysical Masers and Their Environments, Alice Springs, Australia, 12–16 March 2007; Chapman, J.M., Baan, W.A., Eds.; Volume 242, pp. 471–480. [Google Scholar] [CrossRef]
- Hagiwara, Y.; Horiuchi, S.; Imanishi, M.; Edwards, P.G. Second-epoch ALMA Observations of 321 GHz Water Maser Emission in NGC 4945 and the Circinus Galaxy. Astrophys. J. 2021, 923, 251. [Google Scholar] [CrossRef]
- Gordon, M.A.; Sorochenko, R.L. Radio Recombination Lines. Their Physics and Astronomical Applications; Springer: Berlin/Heidelberg, Germany, 2002; Volume 282. [Google Scholar] [CrossRef]
- Cox, P.; Martin-Pintado, J.; Bachiller, R.; Bronfman, L.; Cernicharo, J.; Nyman, L.A.; Roelfsema, P.R. Millimeter recombination lines toward η Carinae. Astron. Astrophys. 1995, 295, L39–L42. [Google Scholar]
- Abraham, Z.; Falceta-Gonçalves, D.; Beaklini, P.P.B. η Carinae Baby Homunculus Uncovered by ALMA. Astrophys. J. 2014, 791, 95. [Google Scholar] [CrossRef]
- Abraham, Z.; Beaklini, P.P.B.; Cox, P.; Falceta-Gonçalves, D.; Nyman, L.Å. η Carinae: High angular resolution continuum, H30α and He30α ALMA images. Mon. Not. R. Astron. Soc. 2020, 499, 2493–2512. [Google Scholar] [CrossRef]
- Sánchez Contreras, C.; Báez-Rubio, A.; Alcolea, J.; Bujarrabal, V.; Martín-Pintado, J. A pilot search for mm-wavelength recombination lines from emerging ionized winds in pre-planetary nebulae candidates. Astron. Astrophys. 2017, 603, A67. [Google Scholar] [CrossRef]
- Wolfire, M.G.; Cassinelli, J.P. Conditions for the Formation of Massive Stars. Astrophys. J. 1987, 319, 850. [Google Scholar] [CrossRef]
- Cesaroni, R.; Galli, D.; Lodato, G.; Walmsley, M.; Zhang, Q. The critical role of disks in the formation of high-mass stars. Nature 2006, 444, 703–706. [Google Scholar] [CrossRef]
- Martin-Pintado, J.; Thum, C.; Bachiller, R. Time-variable recombination line emission in MWC 349. Astron. Astrophys. 1989, 222, L9–L11. [Google Scholar]
- Weintroub, J.; Moran, J.M.; Wilner, D.J.; Young, K.; Rao, R.; Shinnaga, H. Submillimeter Array Imaging of the Maser Emission from the H30α Radio Recombination Line in MWC 349A. Astrophys. J. 2008, 677, 1140–1150. [Google Scholar] [CrossRef]
- Jiménez-Serra, I.; Martín-Pintado, J.; Báez-Rubio, A.; Patel, N.; Thum, C. Extremely Broad Radio Recombination Maser Lines Toward the High-velocity Ionized Jet in Cepheus A HW2. Astrophys. J. Lett. 2011, 732, L27. [Google Scholar] [CrossRef]
- Jiménez-Serra, I.; Báez-Rubio, A.; Rivilla, V.M.; Martín-Pintado, J.; Zhang, Q.; Dierickx, M.; Patel, N. A New Radio Recombination Line Maser Object toward the MonR2 H II Region. Astrophys. J. Lett. 2013, 764, L4. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.A.; Emonts, B.H.C.; van der Hulst, J.M.; Tadhunter, C.N. Fast Outflow of Neutral Hydrogen in the Radio Galaxy 3C 293. Astrophys. J. Lett. 2003, 593, L69–L72. [Google Scholar] [CrossRef]
- Morganti, R.; Tadhunter, C.N.; Oosterloo, T.A. Fast neutral outflows in powerful radio galaxies: A major source of feedback in massive galaxies. Astron. Astrophys. 2005, 444, L9–L13. [Google Scholar] [CrossRef]
- Wiklind, T.; Combes, F. The redshift of the gravitational lens of PKS1830-211 determined from molecular absorption lines. Nature 1996, 379, 139–141. [Google Scholar] [CrossRef]
- Muller, S.; Guélin, M.; Dumke, M.; Lucas, R.; Combes, F. Probing isotopic ratios at z = 0.89: Molecular line absorption in front of the quasar PKS 1830-211. Astron. Astrophys. 2006, 458, 417–426. [Google Scholar] [CrossRef]
- Muller, S.; Guélin, M. Drastic changes in the molecular absorption at redshift z = 0.89 toward the quasar PKS 1830-211. Astron. Astrophys. 2008, 491, 739–746. [Google Scholar] [CrossRef]
- Henkel, C.; Braatz, J.A.; Menten, K.M.; Ott, J. The kinetic temperature of a molecular cloud at redshift 0.9: Ammonia in the gravitational lens PKS0-211. Astron. Astrophys. 2008, 485, 451–456. [Google Scholar] [CrossRef]
- Menten, K.M.; Güsten, R.; Leurini, S.; Thorwirth, S.; Henkel, C.; Klein, B.; Carilli, C.L.; Reid, M.J. Submillimeter water and ammonia absorption by the peculiar z ≈ 0.89 interstellar medium in the gravitational lens of the PKS 1830-211 system. Astron. Astrophys. 2008, 492, 725–730. [Google Scholar] [CrossRef]
- Muller, S.; Beelen, A.; Guélin, M.; Aalto, S.; Black, J.H.; Combes, F.; Curran, S.J.; Theule, P.; Longmore, S.N. Molecules at z = 0.89. A 4-mm-rest-frame absorption-line survey toward PKS 1830-211. Astron. Astrophys. 2011, 535, A103. [Google Scholar] [CrossRef]
- Martí-Vidal, I.; Muller, S.; Combes, F.; Aalto, S.; Beelen, A.; Darling, J.; Guélin, M.; Henkel, C.; Horellou, C.; Marcaide, J.M.; et al. Probing the jet base of the blazar PKS 1830-211 from the chromatic variability of its lensed images. Serendipitous ALMA observations of a strong gamma-ray flare. Astron. Astrophys. 2013, 558, A123. [Google Scholar] [CrossRef]
- Harrison, C.M.; Alexander, D.M.; Mullaney, J.R.; Swinbank, A.M. Kiloparsec-scale outflows are prevalent among luminous AGN: Outflows and feedback in the context of the overall AGN population. Mon. Not. R. Astron. Soc. 2014, 441, 3306–3347. [Google Scholar] [CrossRef]
- Crenshaw, D.M.; Kraemer, S.B.; Schmitt, H.R.; Jaffé, Y.L.; Deo, R.P.; Collins, N.R.; Fischer, T.C. The Geometry of Mass Outflows and Fueling Flows in the Seyfert 2 Galaxy MRK 3. Astron. J. 2010, 139, 871–877. [Google Scholar] [CrossRef]
- Woo, J.H.; Bae, H.J.; Son, D.; Karouzos, M. The Prevalence of Gas Outflows in Type 2 AGNs. Astrophys. J. 2016, 817, 108. [Google Scholar] [CrossRef]
- Nagai, H.; Onishi, K.; Kawakatu, N.; Fujita, Y.; Kino, M.; Fukazawa, Y.; Lim, J.; Forman, W.; Vrtilek, J.; Nakanishi, K.; et al. The ALMA Discovery of the Rotating Disk and Fast Outflow of Cold Molecular Gas in NGC 1275. Astrophys. J. 2019, 883, 193. [Google Scholar] [CrossRef]
- Kameno, S.; Sawada-Satoh, S.; Impellizzeri, C.M.V.; Espada, D.; Nakai, N.; Sugai, H.; Terashima, Y.; Kohno, K.; Lee, M.; Martín, S. A Massive Molecular Torus inside a Gas-poor Circumnuclear Disk in the Radio Galaxy NGC 1052 Discovered with ALMA. Astrophys. J. 2020, 895, 73. [Google Scholar] [CrossRef]
- Rose, T.; Edge, A.C.; Combes, F.; Hamer, S.; McNamara, B.R.; Russell, H.; Gaspari, M.; Salomé, P.; Sarazin, C.; Tremblay, G.R.; et al. A molecular absorption line survey towards the AGN of Hydra-A. Mon. Not. R. Astron. Soc. 2020, 496, 364–380. [Google Scholar] [CrossRef]
- Yates, J.A.; Cohen, R.J.; Hills, R.E. Submillimetre water masers in circumstellar envelopes. Mon. Not. R. Astron. Soc. 1995, 273, 529–548. [Google Scholar] [CrossRef]
- Menten, K.M.; Melnick, G.J. 321 GHz Submillimeter Water Masers around Evolved Stars. Astrophys. J. 1991, 377, 647. [Google Scholar] [CrossRef]
- Richards, A.M.S.; Impellizzeri, C.M.V.; Humphreys, E.M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M.D.; et al. ALMA sub-mm maser and dust distribution of VY Canis Majoris. Astron. Astrophys. 2014, 572, L9. [Google Scholar] [CrossRef]
- Brogan, C.L.; Hunter, T.R.; Towner, A.P.M.; McGuire, B.A.; MacLeod, G.C.; Gurwell, M.A.; Cyganowski, C.J.; Brand, J.; Burns, R.A.; Caratti o Garatti, A.; et al. Sub-arcsecond (Sub)millimeter Imaging of the Massive Protocluster G358.93-0.03: Discovery of 14 New Methanol Maser Lines Associated with a Hot Core. Astrophys. J. Lett. 2019, 881, L39. [Google Scholar] [CrossRef]
- Muller, S.; Combes, F.; Guélin, M.; Gérin, M.; Aalto, S.; Beelen, A.; Black, J.H.; Curran, S.J.; Darling, J.; V-Trung, D.; et al. An ALMA Early Science survey of molecular absorption lines toward PKS 1830-211. Analysis of the absorption profiles. Astron. Astrophys. 2014, 566, A112. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Hsiang, J.Y.; Chung, H.H.; Constantin, A.; Chang, Y.Y.; Cunha, E.d.; Pesce, D.; Chien, W.T.; Chen, B.Y.; Braatz, J.A.; et al. A More Efficient Search for H2O Megamaser Galaxies: The Power of X-Ray and Mid-infrared Photometry. Astrophys. J. 2020, 892, 18. [Google Scholar] [CrossRef]
- Rioja, M.J.; Dodson, R. Precise radio astrometry and new developments for the next-generation of instruments. Astron. Astrophys. Rev. 2020, 28, 6. [Google Scholar] [CrossRef]
- Rioja, M.; Dodson, R.; Asaki, Y. Transformative Multi-Frequency Phase Transfer Solutions for ngEHT. Galaxies 2023, 11, 16. [Google Scholar]
- Dodson, R.; Rioja, M.J.; Jung, T.H.; Sohn, B.W.; Byun, D.Y.; Cho, S.H.; Lee, S.S.; Kim, J.; Kim, K.T.; Oh, C.S.; et al. Astrometrically Registered Simultaneous Observations of the 22 GHz H2O and 43 GHz SiO Masers toward R Leonis Minoris Using KVN and Source/Frequency Phase Referencing. Astron. J. 2014, 148, 97. [Google Scholar] [CrossRef]
Antenna | Aperture Size | 1 at 230 GHz | 1 at 345 GHz |
---|---|---|---|
1 MHz (1.3 km s) | 1 MHz (0.8 km s) | ||
ngEHT-Small | 6 m | 474 mJy | 832 mJy |
ngEHT-Large | 10 m | 282 mJy | 496 mJy |
NOEMA | 15 m × 12 ∼ 26 m | 9.6 mJy | 15 mJy |
ALMA | 12 m × 50 ∼ 42 m | 2.8 mJy | 6 mJy |
Type | Name | Source | Transition | Peak Flux | Line Width | Beam Size |
---|---|---|---|---|---|---|
(Jy beam) | (km s) | (arcsec × arcsec) | ||||
Molecular maser | VY Cma a | AGB | HO 10–9 | 500 | <10 | 0.75 × 0.75 |
G358.93-0.03 b | SFR | CHOH 13–14 | 270 | <5 | 0.46 × 0.42 | |
Circinus c | AGN | HO 10–9 | 1.5 | <10 | 0.33 × 0.21 | |
Atomic maser | Carinae (core) d | post-AGB | H30 | 5.5 | 28 | 0.09 × 0.09 |
MWC 349 e | SFR | H30 | 24–40 | 4–5 | 1.20 × 0.90 | |
Cont/Line | Line width | Beam size | ||||
(mJy beam) | (km s) | (arcsec × arcsec) | ||||
Molecular absorption | 2PKS 1830-211 f | 2GLB | 2HO 1–1 | 700/210 (NE) 570/541 (SW) | <53 53 | 20.50 × 0.50 |
NGC 1052 g | AGN | CO J=3–2 | 442/37 | 169 | 0.21 × 0.21 |
Frequency | Bandwidth | Frequency | Primary Target |
---|---|---|---|
(GHz) | (GHz) | (GHz) | |
230 | 8 | 215–223 | SiO, CHOH, H |
230 | 8 | 252–260 | SiO, H |
345 | 8 | 316–324 | HO, H |
345 | 8 | 350–358 | HCN, HCO+, H, HO |
230 | 16 | 215–231 | CO, SiO, CHOH, CN H |
230 | 16 | 252–268 | SiO, H, HCN, HCO+ |
345 | 16 | 314–330 | HO H |
345 | 16 | 344–360 | CO, HCN, HCO+, H, HO, SiO |
Type | Frequency (GHz) | Transition | E (K) | Source |
---|---|---|---|---|
Molecular masers | 214.088 | SiO v = 2, J=5–4 | 3541 | O-rich AGB |
215.596 | SiO v = 1, J=5–4 | 1790 | O-rich AGB | |
256.898 | SiO v = 2, J=6–5 | 3551 | O-rich AGB | |
258.707 | SiO v = 1, J=6-5 | 1800 | O-rich AGB | |
299.704 | SiO v = 2, J=7–6 | 3564 | O-rich AGB | |
301.814 | SiO v = 1, J=7–6 | 1813 | O-rich AGB | |
342.504 | SiO v = 2, J=8–7 | 3579 | O-rich AGB | |
344.916 | SiO v = 1, J=8–7 | 1827 | O-rich AGB | |
265.853 | HCN (0, 1, 0), J=3–2 | 1050 | C-rich AGB | |
267.199 | HCN (0, 1, 0), J=3–2 | 1050 | C-rich AGB | |
354.460 | HCN (0, 1, 0), J=4–3 | 1067 | C-rich AGB | |
356.256 | HCN (0, 1, 0), J=4–3 | 1067 | C-rich AGB | |
218.440 | CHOH 4–3 | 24 | SFRs (class I) | |
229.759 | CHOH 8–7 | 54 | SFRs (class I) | |
343.599 | CHOH 13–14 | 607 | SFRs (class II) | |
349.107 | CHOH 14–14 | 243 | SFRs (class II) | |
321.226 | HO 10–9 | 1846 | SFRs/AGB/AGNs | |
325.153 | HO 5–4 | 454 | SFRs/AGB/AGNs | |
354.809 | HO 17–4 | 5764 | SFRs/AGB/AGNs | |
Atomic masers | 210.502 | H31 | SFRs | |
231.900 | H30 | SFRs | ||
256.302 | H29 | SFRs | ||
284.251 | H28 | SFRs | ||
316.415 | H27 | SFRs | ||
353.623 | H26 | SFRs | ||
222.012 | H38 | SFRs | ||
240.021 | H37 | SFRs | ||
260.033 | H36 | SFRs | ||
282.333 | H35 | SFRs | ||
307.258 | H34 | SFRs | ||
335.207 | H33 | SFRs | ||
366.653 | H32 | SFRs | ||
Molecular absorption | 220.299 | CO J=2–1 | 5 | AGNs/GLB |
230.538 | CO J=2–1 | 6 | AGNs/GLB | |
330.588 | CO J= 3–2 | 16 | AGNs/GLB | |
345.796 | CO J=3–2 | 17 | AGNs/GLB | |
265.886 | HCN J=3–2 | 13 | AGNs/GLB | |
354.505 | HCN J=4–3 | 26 | AGNs/GLB | |
267.558 | HCO+ J=3–2 | 13 | AGNs/GLB | |
356.734 | HCO+ J=4–3 | 18 | AGNs/GLB | |
259.012 | HCN J=3–2 | 9 | AGNs/GLB | |
345.340 | HCN J=4–3 | 17 | AGNs/GLB | |
260.255 | HCO+ J=3–2 | 9 | AGNs/GLB | |
346.998 | HCO+ J=4–3 | 18 | AGNs/GLB | |
226.874 | CN N=2–1, J=5/2–3/2 | 5 | AGNs/GLB | |
340.247 | CN N=3–2, J=7/2–5/2 | 16 | AGNs/GLB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-J.; Fish, V. Spectral Line VLBI Studies Using the ngEHT. Galaxies 2023, 11, 10. https://doi.org/10.3390/galaxies11010010
Kim D-J, Fish V. Spectral Line VLBI Studies Using the ngEHT. Galaxies. 2023; 11(1):10. https://doi.org/10.3390/galaxies11010010
Chicago/Turabian StyleKim, Dong-Jin, and Vincent Fish. 2023. "Spectral Line VLBI Studies Using the ngEHT" Galaxies 11, no. 1: 10. https://doi.org/10.3390/galaxies11010010
APA StyleKim, D.-J., & Fish, V. (2023). Spectral Line VLBI Studies Using the ngEHT. Galaxies, 11(1), 10. https://doi.org/10.3390/galaxies11010010