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Abstract: Radio astronomical observations at millimeter and submillimeter wavelengths are a very
important tool for astrophysical research. However, there is a huge area in northeastern Eurasia,
including the whole Russian territory, which lacks sufficiently large radio telescopes effectively
operating at these wavelengths. In this review, we describe our long-term efforts to find suitable
sites for such radio telescopes in this area, that is, sites with good atmospheric transparency at
millimeter and submillimeter waves. We describe methods and instruments used for measurements
and evaluations of the atmospheric opacity. They include special radiometric systems, which are
used for estimations of the atmospheric opacity in the transparency windows from the sky brightness
measurements. Evaluation of the precipitable water vapor from such measurements by the artificial
neural network is discussed. Other approaches use water vapor radiometers, global atmospheric
models and signals of the Global Navigation Satellite Systems. To date, long-term radiometric
monitoring has been performed at several candidate sites, and atmospheric conditions for many
sites have been evaluated using global atmospheric models. Several sites with the best atmospheric
transparency at millimeter and submillimeter wavelengths have been selected. They can be effectively
used for astronomical observations, at least in the major atmospheric transparency windows at
1.3 mm and 0.85 mm. In general, the results show that northeastern Eurasia is a promising area for
submillimeter astronomy. These results can also be used for space communications and radar systems.

Keywords: radio astronomy; radio telescopes; telecommunications; millimeter and submillimeter
waves; atmospheric opacity

1. Introduction

Radio astronomical observations at millimeter and submillimeter wavelengths are a
very important tool for astrophysical research (e.g., [1]). They provide a unique opportunity
for detailed investigations of the interiors of the cold dense interstellar clouds of gas and
dust, which represent cradles of new stars. The emission peak of these clouds lies in this
band. Millimeter and submillimeter waves are very rich in the spectral lines of various
molecules, atoms and ions, which can serve as diagnostic tools of physical conditions and
chemical content. At these wavelengths, the highest angular resolution can be achieved,
which is very important for studies of compact objects, in particular active galactic nuclei.
These studies are facilitated by a lower interstellar scattering in comparison with longer
radio wavelengths. Bright examples of such a study are recent images of the “shadows”
of supermassive black holes in the centers of M87 and our Milky Way galaxies [2,3].
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These results were obtained with the Event Horizon Telescope (EHT), which is a global
VLBI network of sufficiently large millimeter-wave observatories operating at the 1.3 mm
wavelength. Nowadays, there are about 10 such observatories in the world. The success
of the EHT stimulates the project of its extension, known as the next-generation EHT
(ngEHT) [4]. The concept of ngEHT includes observations at 3 and 0.8 mm wavelengths,
in addition to the 1.3 mm band. This emphasizes the importance of all these bands for
astronomy. Many locations in the world are considered as candidate sites for new EHT
telescopes (e.g., [5]). There is a huge area in northeastern Eurasia, including the whole
Russian territory, which lacks such facilities, although many years ago construction of a
70 m radio telescope intended for operation at short millimeter wavelengths started on the
Suffa plateau in Uzbekistan [6,7] (it was frozen after the USSR collapse), and now there are
new relevant projects and proposals [8–11].

The main obstacle to ground-based radio astronomy observations at short millimeter
and submillimeter wavelengths, in addition to technical challenges, is the atmospheric
opacity, caused primarily by water and molecular oxygen. The observations are possible
only in the so-called “atmospheric transparency windows”—the bands of relatively high
transparency between the strong spectral lines of these molecules. The main windows
discussed here are those centered at ∼90 GHz, ∼140 GHz, ∼225 GHz and ∼350 GHz. They
are usually referred to as the 3 mm, 2 mm, 1.3 mm and 0.8 mm windows, respectively.
However, even in these windows, the opacity can be quite high. Radio astronomical
observations at the sea level are possible only in the 3 mm and 2 mm windows. At higher
frequencies, high-altitude locations should be used.

While the oxygen absorption is stable and can be rather easily evaluated, the water
content is highly variable. Water in the atmosphere is present in two forms—water vapor
and liquid water (the latter one mainly in clouds). The amount of water vapor is usually
characterized by the PWV (Precipitable Water Vapor) parameter, which is the vertically
integrated amount of water vapor in the atmosphere. It is usually measured in millimeters.
The amount of liquid water is parameterized by the Liquid Water Path (LWP), measured
in g m−2 or in µm (e.g., [5]). The zenith opacity (optical depth) of the atmosphere in
dependence on frequency (ν) is related to these parameters by the following expression:

τ(ν) = τO2(ν) + β(ν)PWV + γ(ν)LWP , (1)

where τO2(ν) is the molecular oxygen contribution to this opacity, β(ν) is the specific
absorption coefficient per PWV unit and γ(ν) is the specific absorption coefficient per LWP
unit. The suitability of a site for radio astronomy observations is primarily characterized by
the opacity statistics in atmospheric windows or by the PWV statistics, which are related to
each other under clear sky conditions, although the LWP statistics are also important.

Both τO2(ν) and β(ν) are determined by the vertical distributions of the atmosphere
physical parameters (pressure and temperature), molecular oxygen and water vapor. They
can be derived empirically for a certain site or calculated using the existing models of the
atmosphere in conjunction with spectroscopic databases (e.g., [12,13]). Then, nowadays,
global dynamic models of the atmosphere with a high spatial and temporal resolution are
available (see below). The dependencies of microwave absorption by molecular oxygen
and water vapor on physical parameters and altitude in the atmosphere were analyzed
many years ago [14]. In the paper in [15], the dependencies of τO2(ν) and β(ν) on altitude
for the 1.3 mm window were calculated. The dependence of the molecular oxygen optical
depth on altitude (h) is well described by the exponential function:

τO2(ν) = α(ν)e−
h

h0 , (2)

where α(ν) is the O2 optical depth at the sea level and h0 is the characteristic height, usually
adopted to be 5.3 km [16], although it can be somewhat different in different seasons [14].

Atmospheric transparency research is important not only for radio astronomy but
also for telecommunications and radars. Millimeter-wave communication channels can
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provide the highest throughput (e.g., [17–23]) but are strongly affected by the atmosphere.
Millimeter-wave radars are promising facilities for monitoring space debris and dangerous
asteroids (e.g., [24–26]).

There are several ways to measure the atmospheric opacity and PVW, which are
described in Section 2. In Section 3, we present some results of such investigations. They
are discussed in Section 4.

2. Instruments and Methods
2.1. Methods for Measuring Atmospheric Opacity

The optical depth of the atmosphere in zenith can be measured by several meth-
ods. Direct measurements of the opacity in a plane-parallel atmosphere are based on
Bouguer’s law:

I(ν) = I0(ν)e−
τ(ν)
cos θ , (3)

where I0(ν) is the intensity of cosmic source emission within the antenna beam, as it would
be measured without atmosphere, I(ν) is the measured intensity of this emission and θ is
the zenith angle. By measurements of I(ν) at different zenith angles, the optical depth in
zenith τ(ν) can be retrieved. This method requires a long time for a substantial change in
zenith angle, stable atmospheric conditions during this time and negligible or well-known
dependence of the antenna response on the zenith angle. The validity of the plane-parallel
model has been analyzed in several works. According to [16,27], it can be used at θ . 85◦,
and according to [28] at θ . 75◦. Our calculations show that under typical atmospheric
conditions, the error in the optical depth for the plane-parallel model is .5% at θ . 80◦

and grows rather rapidly at larger zenith angles.
In practice, the value of the zenith opacity (optical depth) at millimeter wavelengths is

usually derived from measurements of the atmosphere emission [16]. The sky brightness
temperature in a plane-parallel atmosphere, neglecting the cosmic microwave background, equals

Ts(θ, ν) = Ta(ν)

[
1− e−

τ(ν)
cos θ

]
, (4)

where Ta is the mean temperature of the atmosphere:

Ta(ν) =

∫ ∞
0 κ(ν, l)T(l) exp[−

∫ l
0 κ(ν, l′)dl′] dl∫ ∞

0 κ(ν, l) exp[−
∫ l

0 κ(ν, l′)dl′] dl
, (5)

where T(l) is the air temperature along the line of sight and κ(ν, l) is the total air absorption
coefficient, dl = dh/cos θ and h is the height. The value of the mean temperature of the
atmosphere is discussed in [29]. At a relatively low opacity Ta ∼ (0.90 . . . 0.95)T0, where
T0 is the ambient temperature. At a higher opacity, the mean temperature increases, as
expected, to ∼ T0. Therefore, Ta depends on the zenith angle.

In principle, the zenith optical depth can be derived using Equation (4) from the
absolute measurements of the sky brightness temperature. However, this method requires
a precise absolute calibration of the brightness measurements, which can be challenging. A
typical widely used approach, known as a “sky dip” (described below), is based on relative
measurements of the sky brightness at several (minimum two) zenith angles.

2.2. Measurements of the Atmosphere Optical Depth by the “Sky Dip” Method
2.2.1. Basics of the “Sky Dip” Method

From the measurements at two zenith angles (θ1 and θ2), the optical depth of the
atmosphere in zenith in the first approximation can be obtained as [16]

τ =
1

sec θ2 − sec θ1
ln

u0 − u1

u0 − u2
. (6)
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Here, u1 and u2 are the receiver responses at the zenith angles θ1 and θ2, respectively,
while u0 is the response for the input emission with the brightness temperature T0. Most
frequently, a reference angle near the horizon, where the optical depth should be high, is
used for this purpose. Some variants of this method, which use measurements at 3 zenith
angles and a reference area near the horizon, are considered in [30]. From measurements of
the sky brightness in a range of zenith angles, the optical depth can be derived by fitting
the measurement results with a function corresponding to Equation (4) (which can be also
expressed in the logarithmic form), assuming a constant mean atmosphere temperature.
In this case, a reference signal is needed anyway. Some examples of such devices are the
225 GHz tipping radiometers at the site of the 30 m IRAM radio telescope (D.L. John,
private communication) and at the Large Millimeter Telescope (LMT) site [31].

2.2.2. A Dual-Band Radiometer for Measuring the Atmospheric Opacity Developed at the
Institute of Applied Physics RAS

About 10 years ago, a dual-band radiometer MIAP-2 for measuring the atmospheric
opacity was developed and manufactured at the Institute of Applied Physics of the Russian
Academy of Sciences and GYCOM company [32]. The radiometer operates in the 3 mm
and 2 mm atmospheric windows.

At the front-end of the 3 mm channel, a broad-band millimeter-wave amplifier is
used with the specified frequency range 84–99 GHz. In fact, it has no rejection of lower
frequencies, which leads to contamination of the measurements by the strong contribution
of the molecular oxygen absorption band near 60 GHz. The problem was partly fixed by
the installation of a waveguide filter with the cross-section of 1× 2 mm2, which has a cutoff
frequency of ∼75 GHz [33]. Nevertheless, the contribution of the low frequencies remains
significant, and its consequences are discussed below.

The front-end of the 2 mm channel includes the local oscillator on a Gunn diode
with a built-in frequency doubler, a balanced mixer on Schottky-barrier diodes (SBDs), an
intermediate-frequency amplifier (IFA) and a detector for the range of 4–8 GHz. The local
oscillator frequency is 140 GHz. The channel detects the emissions in both lower and upper
sidebands, which are 132–136 GHz and 144–148 GHz, respectively.

At the front-ends of both channels, the modulator–calibrator is used. This device is
described in detail in [34]. It is based on chains of series–parallel-connected SBDs, placed
into the standard cross-section waveguide. It can serve as a modulator of the input signal or
as a source of a calibration signal. Depending on the current, it can be in 3 states: (1) open
(transmitting the input signal with low losses), (2) locked with the equivalent brightness
temperature of 155–180 K (“cold” calibration level) and (3) locked with the equivalent
brightness temperature of ∼300 K (“warm” calibration level). These features enable both
sky dip measurements and absolute measurements of the sky brightness temperature.

Both channels are equipped with the lens antennas, which are misphased conically
shaped feed horns with a bent fracture and lenses. The half-power beam width of the
antennas (with lenses) in both bands is about 2.5◦. The elevation scan is provided by the
rotating common mirror in front of both horns, oriented at the angle of 45◦, and a mirror
drive system, which is based on a stepper motor. The zenith angle range is from 0◦ to 90◦,
and the step is 0.7◦.

Three measurement modes are possible. In the first one, the measurements are
performed at two zenith angles and at the angle near the horizon as a reference (see
Section 2.2.1). In the second mode, the data at 5 zenith angles are acquired. The angle
near the horizon is not mandatory. Last, the absolute measurements of the sky brightness
are possible.

As mentioned above, the frequency responses of the channels, especially in the 3 mm
band, are not well-defined. This can create problems with the interpretation of the mea-
surement results. In [35], an attempt is made to determine the effective frequencies of the
channels by a comparison of the experimental values of the coefficients in Equation (1)
with the values obtained from the model calculations for a range of frequencies. The
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experimental values were obtained using independent measurements of the PWV amount.
As a result, it was found that the effective frequencies of the 3 mm and 2 mm channels are
79.7 and 134 GHz, respectively. The effective frequency of the 3 mm channel is lower than
the specified frequency range of the 3 mm amplifier. It shows that the contribution of the
molecular oxygen absorption band near 60 GHz is significant in this channel and should be
taken into account.

Two pieces of such a radiometer have been manufactured; however, the second one
lacks the 2 mm channel. At the same time it has a better constrained frequency response of
the 3 mm channel.

2.3. Measurements of the Precipitable Water Vapor (PWV) by Water Vapor Radiometers

In some cases, the information on the PWV value and its fast variations are of primary
interest. They lead to phase shifts and fluctuations, which should be taken into account in
radio interferometry. Although such information can be retrieved from the measurements
of the opacity in the atmospheric windows described above, a more effective approach
is to perform such measurements at frequencies near the H2O transitions. Usually, for
this purpose, the transitions at ∼22 GHz and ∼183 GHz are used. For example, all 12 m
ALMA antennas are equipped with the 183 GHz water vapor radiometers [36]. At the
Institute of Applied Astronomy of the Russian Academy of Sciences, a dual-band water
vapor radiometer operating at ∼21 GHz and ∼31 GHz was developed [37]. It is actively
used for atmospheric measurements (e.g., [38,39]).

2.4. Evaluation of the Atmospheric Opacity from Global Atmospheric Models

Atmospheric transparency can be estimated on the basis of the approach used for
modeling path delay in the neutral atmosphere [40]. The publicly available data provided by
the NASA Global Modeling and Assimilation Office model GEOS-FPIT (http://gmao.gsfc.
nasa.gov, accessed on 1 September 2023) are used [9]. They evaluate atmosphere parameters
(in particular, air temperature, total atmospheric pressure, and partial pressure of water
vapor) using various ground, air-born and space-born measurements that are assimilated
into a dynamic model. The current models have 72 levels in altitude, 0.25◦ × 0.31◦ spatial
grid and 3 h resolution in time. Atmospheric absorption at any frequency can be calculated
for any selected location by using standard spectroscopic parameters, as described in [9].
The values of the zenith opacity obtained in this way are in good agreement with the results
of sky dip measurements at the LMT and other sites, including measurements with the
MIAP-2 radiometer at 2 mm on the Suffa plateau [41].

Similar data are provided by the Modern-Era Retrospective Analysis for Research and
Applications, Version 2 (MERRA-2) [42,43] and the European Center for Medium-Range
Weather Forecast ReAnalysis (ERA5) [44].

2.5. Evaluation of the Precipitable Water Vapor (PWV) from the Global Navigation Satellite System
(GNSS) Data

The development of the Global Navigation Satellite Systems (GNSS) provides an
opportunity for estimations of PWV from measurements of delays of the navigation
signals [45–47]. Taking into account the surface temperature and pressure, the PWV values
can be estimated from these delays with a low uncertainty. Nowadays, this method is
widely used for this purpose, including evaluation of results obtained from the global
atmospheric models mentioned above (e.g., [48–59]).

2.6. Evaluation of the Precipitable Water Vapor (PWV) from the Sky Dip Data by the Artificial
Neural Network

The direct comparison of the results obtained by the different methods may be prob-
lematic. The low PWV values in dry atmosphere are barely detectable by humidity sensors
in aerosonde. Wet conditions and high opacity lead to small variations in brightness
temperature on different angles, leading to higher errors in τ and PWV estimations. The
spatial–temporal resolution of the dynamic atmospheric models is limited: it is lower

http://gmao.gsfc.nasa.gov
http://gmao.gsfc.nasa.gov
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than typical sizes of the topographic features such as mountains and typical times of the
variations in PWV values. As a result, different methods should be cross-validated and
extrapolated to the same scale.

Recently, we proposed a statistical approach for the determination of the PWV values
based on machine learning algorithms and MIAP-2 data [60]. The idea was to use nonlinear
regression to calculate PWV values from the MIAP data using the receiver responses on
different angles in the 2 mm and 3 mm bands as the input data, without addressing the
physical model. The training set was based on a one-year monitoring session near the
Badary observatory (2016–2017). The observatory was equipped with the water vapor
radiometer (WVR) and GNSS receivers capable of tropospheric delay estimations. We
found that the GNSS and WVR data were consistent. We used the GNSS data as the target
values for the statistical model fitting and the k-nearest neighbors (kNN) [61] and artificial
neural network (ANN) as the regression models. We utilized the individual component
analysis to speed up the learning process. As a result, the regression model encapsulates
the instrumental transfer function and the PWV fraction in the microwave absorption
(Equation (1)). The bias introduced by the plane-parallel atmospheric model was also
excluded. The coefficient of determination R2 on the validation part of the dataset was
0.8 for kNN and 0.86 for ANN, with symmetrical deviations from the trend line [60]. The
result of this findings is that the PWV may be consistently determinated from the sky dip
data using the statistical approach.

In our study, we also employ an approach based on building statistical models, but we
utilize a more complex neural network topology by incorporating an LSTM layer. The input
data consist of MIAP-2 measurements 2× 6× 3 vector (bands, angles, nm = tMERRA/tMIAP,
243 measurements of MIAP per MERRA-2 timestamp). The MIAP-2 datasets for the Badary
(2016–2017) and Svalbard (2018–2019) territories comprise 53,449 and 51,680 measurements,
respectively. The target values are based on hourly PWV data from the MERRA-2 model.
After aligning the MIAP-2 and MERRA-2 data to a common temporal grid, the datasets for
the Badary and Svalbard territories consist of 8233 and 8345 measurements, respectively.
The normalized dataset undergoes Independent Component Analysis (ICA) dimensionality
reduction procedure with 10 components. Random partitioning was applied to create
training and testing datasets with a ratio of 75% to 25%, respectively. The topology of
the ANN consists of six layers: an input fully connected layer (Dense), a long short-term
memory (LSTM) layer and four fully connected layers. The layers are composed of 350,
200, 17,500, 700, 10 and 1 neurons, respectively.

In our study, we found that PWV estimations based on WVR data are biased from
MERRA-2 data in dry conditions (Figure 1). The resulting R2 was 0.98 on the validation
dataset trained on Badary data only and 0.96 for the Svalbard and Badary combined dataset.
The time series and scatter plot are presented in Figures 1 and 2. The results show a good
agreement between the predicted and the PWV MERRA-2-based and GNSS-based values.
The lower R2 value is probably caused by the different impact of the absorption in O2 and
LWP in different sites that cannot be represented by the single regression model. Still, the
predictive ability of the model is very high at the full variety of the atmospheric conditions
during the sessions.

This approach can be applied to different types of the data-acquiring methods and
should produce statistically coherent results. The R2 traces the predictive ability of the
statistical model and can test the validity of the different nondirect methods testing as-
troclimatic measurements or atmospheric model predictions in specific places. We used
the MERRA-2 model as the reference, but it can also be tested by different direct PWV
drone-based measurements or aerosonde, which are too rare to serve as training sets.
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Figure 1. (Left panel): the scatter diagram between the WVR and MERRA-2. (Right panel): correla-
tion between the target PWV values (MERRA-2) and the predicted values on the validation dataset.
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Figure 2. Time series plot of the PWV in MERRA-2 data (target values), GNSS-based data and
predicted by ANN from Badary session—one-month partial selection.

3. Results
3.1. Monitoring of the Millimeter-Wave Atmospheric Opacity at Selected Sites

To date, atmospheric absorption studies with the MIAP-2 radiometers have been
carried out at several sites in Russia and Uzbekistan [33,62–67]. However, a long-term
monitoring covering all seasons is limited to the RT-70 radio telescope construction site
on the Suffa plateau in Uzbekistan (altitude 2400 m), the site of the BTA telescope of the
Special Astrophysical Observatory (SAO) in the North Caucasus (altitude 2040 m) and
the Badary observatory in the Baikal region (altitude 813 m). Among these sites, the best
atmospheric transparency has been observed on the Suffa plateau [33,62,63]. From these
measurements, the PWV values were derived, which are in good agreement with the
satellite and aerosonde data [33]. Then, the expected optical depth in other atmospheric
transparency windows was evaluated. The expected monthly averaged values of the optical
depth in zenith at 1.3 mm are ∼0.3 in winter and ∼0.8 in summer (Figure 3, left panel).
The corresponding monthly averaged PWV values are ∼4 mm in winter and ∼14 mm in
summer [33] (Figure 3, right panel).

In addition to long-term monitoring, short-term measurements of atmospheric absorp-
tion have been carried out in several locations: the Muus-Khaya peak in Yakutia (altitude
1950 m), the Terskol peak in Caucasus (altitude 3150 m), Svalbard (altitude 36 m), Caucasian
Mountain Observatory (altitude 2112 m), Mondy, Sayans in Buryatia (altitude 2006 m) and
Karadag in Crimea (altitude 105 m). Measurements have recently begun in the eastern
Caucasus [67]: in Dagestan (Mount Mayak, 2700 m and Mount Shalbuzdag, 4142 m) and in
North Ossetia (Stolovaya Mountain, ∼3000 m).
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Figure 3. (Left panel): the monthly averaged values of the optical depth at the site of RT-70 con-
struction on the Suffa plateau in the atmospheric transparency windows at 3, 2, 1.3 and 0.8 mm.
(Right panel): the monthly averaged PWV values at this site derived from the radiometer MIAP-2
measurements (filled circles) and from the aerosonde data (open circles). The plots are based on the
data from [33].

The Muus-Khaya peak is located in the region of the “Pole of Cold”. The measurements
were taken in July and gave quite good results for this season: PWV∼5 mm [62], which
is significantly better than at the RT-70 site on the Suffa plateau in summer. The expected
PWV value in winter is 1–2 mm, which makes this peak a promising site for millimeter and
submillimeter astronomy. The short measurement on the Terskol peak did not show good
results. The one-day measurements on Elbrus in August 2021 gave rather high opacity,
too. Promising preliminary data were obtained for the eastern Caucasus. In May 2023, a
long (over half a year) expedition ended in the vicinity of Kurapdag (Chirag village), which
basically confirmed the previously formulated hypothesis about the lower humidity of the
eastern Caucasus compared with the western one. An interesting feature was observed on
Karadag (located near the Black Sea shore). The millimeter-wave absorption there strongly
depends on the wind direction and can drop to quite low values when dry air enters from
the Steppe Crimea [30]. This effect is apparently due to the specific conditions at this site
and hardly can be expected at most other locations.

All the data collected during numerous expeditions, including the semiannual expedi-
tion to Dagestan that ended in May 2023, where the results have not yet been processed or
published, are posted in the open-access archive [68].

3.2. Some Results of the Opacity Evaluations from the NASA Data

Evaluations of the atmospheric opacity from the NASA data as described in Section 2.4
have been performed for more than 40 sites around the globe [9]. They include an analysis
of the seasonal variations in opacity. The main conclusion of this research is that the
best place for submillimeter astronomy in the Eastern hemisphere is the high-altitude
(4300–4500 m) plateau in Eastern Pamirs. The atmospheric transparency at this site is
comparable with that in the Atacama desert in Chile and is much better than on the Suffa
plateau in Uzbekistan, where the 70 m radio telescope is constructed. Typical PWV values
in winter are as low as 0.8–0.9 mm. The extent of the plateau is rather large, and baselines
up to ∼130 km are possible. Similar conditions exist in Tibet. Among the sites on the
Russian territory considered in this study, the best transparency was found for the Terskol
peak (3150 m), where the optical observatory is located. The comparison of the atmospheric
transparency on the Suffa plateau and on the Terskol peak is presented in Figure 4.

In general, the advantages of high-altitude locations for submillimeter astronomy are
due to lower water content (including cloudiness), lower oxygen absorption and lower
specific absorption coefficient per PWV unit β(ν) in Equation (1). It is worth noting that in
the mountains, humidity decreases with height more slowly than above the plain (e.g., [29]),
and the decrease in humidity is largely due to a drop in temperature.
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Figure 4. Probability density and cumulative distributions of 230 GHz zenith opacity at the Ter-
skol peak (blue and green, respectively) in comparison with the Suffa plateau (black and red)
calculated from the output of NASA global numerical weather model GEOS-FPIT for 12 years
(1 January 2008–31 December 2019). The plots are based on the calculations described in [9].

4. Discussion
4.1. Degradation of the Telescope Sensitivity Due to Atmospheric Opacity

Atmospheric opacity leads to the deterioration of the telescope sensitivity in any case.
However, it is worth obtaining numerical estimates of this deterioration. In particular, this
can help better understand the acceptable value of opacity in various conditions. For this
purpose, we estimate the quantity, which can be called a “degradation factor”:

RD =
T∗SYS
TRX

, (7)

where TRX is the receiver noise temperature and T∗SYS is the system temperature “above
the atmosphere”, i.e., calculated from the system temperature at the receiver front-end
taking into account the attenuation in the atmosphere. Neglecting antenna losses and
background emission,

T∗SYS = TRXe
τ

cos θ + Ta

(
e

τ
cos θ − 1

)
. (8)

In the case of no opacity, RD = 1. The plot of the degradation factor RD in dependence
on the receiver noise temperature TRX and zenith opacity τ for the zenith angle θ = 45◦,
assuming Ta = 250 K, is presented in Figure 5. For example, if the degradation factor of
1.5 is considered to be acceptable and the receiver noise temperature is TRX ∼ 100 K, then
the required zenith opacity is τ . 0.1. It is worth noting that the integration time required
to achieve the same sensitivity varies as R2

D. In the case of TRX � Ta, which happens at
very high frequencies, the degradation factor approaches eτ/cos θ . Then, RD = 1.5 implies
τ ≈ 0.29 at θ = 45◦.
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Figure 5. The degradation factor RD (gray scale) in dependence on the receiver noise temperature
TRX and zenith opacity τ for the zenith angle θ = 45◦, assuming Ta = 250 K. The curves correspond
to RD = 1.2, 1.5 and 2 (from bottom to top).

4.2. The Effect of Cloudiness

The coefficient γ in Equation (1) is approximately 2.5× 10−3 and 3.5× 10−3 µm−1

at 230 and 345 GHz, respectively, with weak temperature dependence [69]. This means
that LWP of 100 µm (which is equivalent to 100 g m−2) contributes about 0.25 to the
opacity at 230 GHz. The median values of LWP for different cloud classes are from
∼10 to ∼40 g m−2 [70,71]. In [5], the LWP statistics are presented for the existing and
candidate EHT sites. The median values are well below 100 µm for most sites. Therefore,
in most cases, the opacity in clouds at 1.3 mm is .0.1 and cannot fully prevent radio
astronomical observations.

However, the problem is that clouds are usually very inhomogeneous, which leads
to spatial and temporal fluctuations of opacity and sky brightness. Their influence can
hardly be sufficiently suppressed, even by the usual beam-switching technique. As a result,
these fluctuations make observations of weak sources practically impossible, especially
in continuum. Spectral line observations are less affected because the fluctuations are
synchronous in all channels and can be subtracted at the data reduction. However, a more
frequent calibration is needed.

4.3. Comparison of the Candidate Sites for Millimeter-Wave Telescopes in Northeastern Eurasia

Long-term monitoring of atmospheric opacity with the MIAP-2 radiometers has been
performed at several sites in Russia and Uzbekistan, as described in Section 3.1 (the RT-
70 radio telescope construction site on the Suffa plateau, the site of the BTA telescope
in Caucasus and the Badary observatory). Among these sites, the best conditions for
millimeter-wave astronomy have been observed on the Suffa plateau. However, these
conditions are far from being excellent and hardly allow for regular observations at wave-
lengths λ . 2 mm. At 1.3 mm, only episodic observations are possible in winter, when
the monthly averaged value of zenith opacity at this wavelength drops to ∼0.3 (somewhat
lower estimates of the opacity for this site are obtained in [5]).

Promising results have been obtained in the short summer measurements on the
Muus-Khaya peak in Yakutia (Section 3.1). However, long-term monitoring at this site is
needed. Short measurements on the Terskol peak are not conclusive.

Investigations with various methods (e.g., [9,41,67,72–76]) reveal other promising sites
in Eurasia with better conditions in comparison with the Suffa plateau. In the paper in
[9], based on the NASA GEOS-FPIT model, the eastern Pamirs and Tibet are shown to be
the best places. According to [73], based on the ERA5 reanalysis, very good conditions
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exist at the Ali 1 site in Tibet (PWV ∼0.4 mm in winter) and at Muztag-Ata in the Chinese
Pamirs (PWV ∼0.7 mm in winter). Comparable conditions exist in the Sayan Mountains.
The Khulugaisha peak, in terms of its characteristics, is close to the sites of Tibet and
Pamirs (PWV ∼0.6 mm in winter). There are promising sites in Altai and Dagestan, in
particular the Khorai and Kurapdag mountains [73]. The Terskol peak is also rather good
in terms of PWV [41,77] but not so good concerning cloudiness. The Aktashtau peak in
Uzbekistan (3383 m) located near the RT-70 construction site has PWV statistics similar
to Terskol [73]. With PWV . 2 mm, astronomical observations at least in the 1.3 mm and
0.85 mm atmospheric windows can be quite efficient. Even lower PWV values of ∼0.5 mm
make observations in the higher-frequency windows possible.

It is worth noting that in rugged terrains, the spatial resolution of the global models
can be insufficient to characterize atmospheric conditions on certain sites (e.g., on local
peaks). This emphasizes the importance of local measurements with radiometric systems
or GNSS devices. High-resolution weather prediction and recording on the cloudiness near
the observation site could be promising in this respect, too.

So far, our measurements have been performed at 3 and 2 mm. Measurements in the
1.3 mm window would be very important.

In this consideration of the candidate sites for new millimeter- and sub-millimeter-
wave telescopes, we have taken into account only the atmospheric opacity. However, there
are other criteria which should also be considered. One of them is the stability of the
atmosphere [78,79]. Enhanced instability can lead to strong phase fluctuations [80] and
anomalous refraction (e.g., [81]). This factor is still poorly investigated.

A new large millimeter-wave telescope would be an efficient part of the global VLBI
network (EHT). The estimates show that from this point of view, the Caucasus region is the
most effective with the existing EHT configuration (Andrey Lobanov, private communica-
tion). However, the situation will change if a large millimeter-wave telescope is built in
eastern Asia. In this case, places like the Pamirs and Tibet will have an advantage.

5. Conclusions

In this review, we described methods used to study atmospheric transparency at mil-
limeter and submillimeter wavelengths and summarized the main results of such studies
in northeastern Eurasia, with an emphasis on the results of our work. The main agents
responsible for the absorption of millimeter and submillimeter waves in the atmosphere
are water in various physical states and oxygen. Under clear sky conditions, variations
in atmospheric opacity are related to variations in the amount of the precipitable water
vapor (PWV). The direct determination of the atmosphere optical depth is usually based
on measurements of sky brightness. It can be also evaluated from the PWV value. PWV
estimates can be obtained from measurements of the atmosphere emission with water
vapor radiometers. Nowadays, the delays of the GNSS (Global Navigation Satellite System)
signals are frequently used for this purpose. We proposed the statistical approach for the
determination of the PWV values from radiometric measurements based on machine learn-
ing algorithms, without addressing the physical model of the atmosphere. Atmospheric
absorption at any frequency can be calculated for any selected location using the global
atmospheric models now available. We estimate degradation of the telescope sensitivity
due to atmospheric opacity.

Our studies of the atmospheric transparency at the candidate sites for millimeter and
submillimeter telescopes have been ongoing for about 10 years already by various methods.
The considered sites are located in Russia and in the nearby surroundings (in particular, in
Uzbekistan). The atmospheric optical depth has been measured with the dual-band tipping
radiometer and evaluated with global atmospheric models. Our results, as well as other
investigations, show that there are several sites in this area which can be effectively used
for astronomical observations in at least the major atmospheric transparency windows at
1.3 mm and 0.85 mm. In general, the results show that northeastern Eurasia is a promising
area for submillimeter astronomy.
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The investigations continue. More detailed studies of several recently suggested sites
are planned, as well as an extension of the measurements to the 1.3 mm atmospheric window.
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