Jets in Low-Mass Protostars
Abstract
1. Introduction
2. Discovery and Theoretical Foundations
3. Physical Properties and Observational Characteristics of Jets and Outflows
3.1. Molecular vs Neutral and Ionized Components
3.2. Morphology and Structure
3.3. Shock Processing
3.4. Chemical Composition in Shock Signatures
3.5. Velocity Gradients and Rotation Signatures in Protostellar Jets and Outflows
3.6. Physical Parameters
3.7. Monopolarity Nature
3.8. Episodic Nature and Their Origin
3.9. Disk Winds Around the Jets?
4. Launching Models
5. Future Works
6. Summary and Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reipurth, B.; Bally, J. Herbig-Haro Flows: Probes of Early Stellar Evolution. Annu. Rev. Astron. Astrophys. 2001, 39, 403–455. [Google Scholar] [CrossRef]
- Arce, H.G.; Shepherd, D.; Gueth, F.; Lee, C.F.; Bachiller, R.; Rosen, A.; Beuther, H. Molecular Outflows in Low- and High-Mass Star-forming Regions. Protostars and Planets V, 2007; p. 245. arXiv 2007, arXiv:astro-ph/0603071. [Google Scholar] [CrossRef]
- Frank, A.; Ray, T.P.; Cabrit, S.; Hartigan, P.; Arce, H.G.; Bacciotti, F.; Bally, J.; Benisty, M.; Eislöffel, J.; Güdel, M.; et al. Jets and Outflows from Star to Cloud: Observations Confront Theory. In Protostars and Planets VI; University of Arizona Press: Tucson, AZ, USA, 2014; pp. 451–474. Available online: https://muse.jhu.edu/chapter/1386897 (accessed on 30 September 2025).
- Audard, M.; Ábrahám, P.; Dunham, M.M.; Green, J.D.; Grosso, N.; Hamaguchi, K.; Kastner, J.H.; Kóspál, Á.; Lodato, G.; Romanova, M.M.; et al. Episodic Accretion in Young Stars. In Protostars and Planets VI; University of Arizona Press: Tucson, AZ, USA, 2014; pp. 387–410. Available online: https://muse.jhu.edu/chapter/1386894 (accessed on 30 September 2025).
- Bally, J. Protostellar Outflows. Annu. Rev. Astron. Astrophys. 2016, 54, 491–528. [Google Scholar] [CrossRef]
- Lee, C.F. Molecular jets from low-mass young protostellar objects. Astron. Astrophys. Rev. 2020, 28, 1. [Google Scholar] [CrossRef]
- Ray, T.P.; Ferreira, J. Jets from young stars. N. Astron. Rev. 2021, 93, 101615. [Google Scholar] [CrossRef]
- Lee, C.F.; Ho, P.T.P.; Li, Z.Y.; Hirano, N.; Zhang, Q.; Shang, H. A rotating protostellar jet launched from the innermost disk of HH 212. Nat. Astron. 2017, 1, 0152. [Google Scholar] [CrossRef]
- Shu, F.; Najita, J.; Ostriker, E.; Wilkin, F.; Ruden, S.; Lizano, S. Magnetocentrifugally Driven Flows from Young Stars and Disks. I. A Generalized Model. Astrophys. J. 1994, 429, 781–796. [Google Scholar] [CrossRef]
- Shu, F.H.; Najita, J.R.; Shang, H.; Li, Z.Y. X-Winds Theory and Observations. In Protostars and Planets IV; Mannings, V., Boss, A.P., Russell, S.S., Eds.; University of Arizona Press: Tucson, AZ, USA, 2000; pp. 789–814. [Google Scholar]
- Pudritz, R.E.; Ouyed, R.; Fendt, C.; Brandenburg, A. Disk Winds, Jets, and Outflows: Theoretical and Computational Foundations. In Protostars and Planets V; University of Arizona Press: Tucson, AZ, USA, 2007; p. 277. [Google Scholar] [CrossRef]
- Shang, H.; Krasnopolsky, R.; Liu, C.F.; Wang, L.Y. A Unified Model for Bipolar Outflows from Young Stars: The Interplay of Magnetized Wide-angle Winds and Isothermal Toroids. Astrophys. J. 2020, 905, 116. [Google Scholar] [CrossRef]
- Dutta, S.; Lee, C.F.; Johnstone, D.; Lee, J.E.; Hirano, N.; Di Francesco, J.; Moraghan, A.; Liu, T.; Sahu, D.; Liu, S.Y.; et al. ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): Molecular Jets and Episodic Accretion in Protostars. Astron. J. 2024, 167, 72. [Google Scholar] [CrossRef]
- Herbig, G.H. The Spectra of Two Nebulous Objects Near NGC 1999. Astrophys. J. 1951, 113, 697–699. [Google Scholar] [CrossRef]
- Haro, G. Herbig’s Nebulous Objects Near NGC 1999. Astrophys. J. 1952, 115, 572. [Google Scholar] [CrossRef]
- Snell, R.L.; Loren, R.B.; Plambeck, R.L. Observations of CO in L 1551: Evidence for stellar wind driven shocks. Astrophys. J. 1980, 239, L17–L22. [Google Scholar] [CrossRef]
- Cabrit, S.; Bertout, C. CO line formation in bipolar flows. III. The energetics of molecular flows and ionized winds. Astron. Astrophys. 1992, 261, 274–284. [Google Scholar]
- Bontemps, S.; Andre, P.; Terebey, S.; Cabrit, S. Evolution of outflow activity around low mass embedded young stellar objects. Astron. Astrophys. 1996, 311, 858–872. [Google Scholar]
- Dunham, M.M.; Arce, H.G.; Mardones, D.; Lee, J.E.; Matthews, B.C.; Stutz, A.M.; Williams, J.P. Molecular Outflows Driven by Low-mass Protostars. I. Correcting for Underestimates When Measuring Outflow Masses and Dynamical Properties. In Disks and Outflows Around Young Stars; Springer: Berlin/Heidelberg, Germany, 2014; Volume 467, pp. 270–275. [Google Scholar] [CrossRef]
- Yıldız, U.A.; Kristensen, L.E.; van Dishoeck, E.F.; Hogerheijde, M.R.; Karska, A.; Belloche, A.; Endo, A.; Frieswijk, W.; Güsten, R.; van Kempen, T.A.; et al. APEX-CHAMP+ high-J CO observations of low-mass young stellar objects: IV. Mechanical and radiative feedback. Astron. Astrophys. 2015, 576, A109. [Google Scholar] [CrossRef]
- Podio, L.; Tabone, B.; Codella, C.; Gueth, F.; Maury, A.; Cabrit, S.; Lefloch, B.; Maret, S.; Belloche, A.; André, P.; et al. The CALYPSO IRAM-PdBI survey of jets from Class 0 protostars: Exploring whether jets are ubiquitous in young stars. Astron. Astrophys. 2021, 648, A45. [Google Scholar] [CrossRef]
- Dutta, S. Molecular Jets from an Evolved Protostar: Insights from JWST-ALMA Synergy. Astrophys. J. 2025, 991, 45. [Google Scholar] [CrossRef]
- Larson, R.B. Numerical calculations of the dynamics of a collapsing proto-star. Mon. Not. R. Astron. Soc. 1969, 145, 271–295. [Google Scholar] [CrossRef]
- Tomisaka, K. Collapse-Driven Outflow in Star-Forming Molecular Cores. Astrophys. J. 1998, 502, L163–L167. [Google Scholar] [CrossRef]
- Machida, M.N.; Inutsuka, S.-I.; Matsumoto, T. High- and Low-Velocity Magnetized Outflows in the Star Formation Process in a Gravitationally Collapsing Cloud. Astrophys. J. 2008, 676, 1088–1108. [Google Scholar] [CrossRef]
- Tomida, K.; Tomisaka, K.; Matsumoto, T.; Hori, Y.; Okuzumi, S.; Machida, M.N.; Saigo, K. Radiation Magnetohydrodynamic Simulations of Protostellar Collapse: Protostellar Core Formation. Astrophys. J. 2013, 763, 6. [Google Scholar] [CrossRef]
- Harsono, D.; Bjerkeli, P.; Ramsey, J.P.; Pontoppidan, K.M.; Kristensen, L.E.; Jørgensen, J.K.; Calcutt, H.; Li, Z.Y.; Plunkett, A. JWST Peers into the Class I Protostar TMC1A: Atomic Jet and Spatially Resolved Dissociative Shock Region. Astrophys. J. Lett. 2023, 951, L32. [Google Scholar] [CrossRef]
- Ray, T.P.; McCaughrean, M.J.; Caratti o Garatti, A.; Kavanagh, P.J.; Justtanont, K.; van Dishoeck, E.F.; Reitsma, M.; Beuther, H.; Francis, L.; Gieser, C.; et al. Outflows from the youngest stars are mostly molecular. Nature 2023, 622, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Narang, M.; Manoj, P.; Tyagi, H.; Watson, D.M.; Megeath, S.T.; Federman, S.; Rubinstein, A.E.; Gutermuth, R.; Caratti o Garatti, A.; Beuther, H.; et al. Discovery of a Collimated Jet from the Low-luminosity Protostar IRAS 16253–2429 in a Quiescent Accretion Phase with the JWST. Astrophys. J. Lett. 2024, 962, L16. [Google Scholar] [CrossRef]
- Tychoniec, Ł.; van Gelder, M.L.; van Dishoeck, E.F.; Francis, L.; Rocha, W.R.M.; Caratti o Garatti, A.; Beuther, H.; Gieser, C.; Justtanont, K.; Linnartz, H.; et al. JWST Observations of Young protoStars (JOYS): Linked accretion and ejection in a Class I protobinary system. Astron. Astrophys. 2024, 687, A36. [Google Scholar] [CrossRef]
- Assani, K.D.; Harsono, D.; Ramsey, J.P.; Li, Z.Y.; Bjerkeli, P.; Pontoppidan, K.M.; Tychoniec, Ł.; Calcutt, H.; Kristensen, L.E.; Jørgensen, J.K.; et al. The asymmetric bipolar [Fe II] jet and H2 outflow of TMC1A resolved with the JWST NIRSpec Integral Field Unit. Astron. Astrophys. 2024, 688, A26. [Google Scholar] [CrossRef]
- Caratti o Garatti, A.; Ray, T.P.; Kavanagh, P.J.; McCaughrean, M.J.; Gieser, C.; Giannini, T.; van Dishoeck, E.F.; Justtanont, K.; van Gelder, M.L.; Francis, L.; et al. JWST Observations of Young protoStars (JOYS): HH211: Textbook case of a protostellar jet and outflow. Astron. Astrophys. 2024, 691, A134. [Google Scholar] [CrossRef]
- Vleugels, C.; McClure, M.; Sturm, A.; Vlasblom, M. The H2 jet and disk wind of the Class I protostar HOPS 315. Astron. Astrophys. 2025, 695, A145. [Google Scholar] [CrossRef]
- Okoda, Y.; Yang, Y.L.; Evans, N.J., II; Kim, J.; Jin, M.; Garrod, R.T.; Francis, L.; Johnstone, D.; Ceccarelli, C.; Codella, C.; et al. CORINOS. III. Outflow Shocked Regions of the Low-mass Protostellar Source IRAS 15398–3359 with JWST and ALMA. Astrophys. J. 2025, 982, 149. [Google Scholar] [CrossRef]
- Le Gouellec, V.J.M.; Lew, B.W.P.; Greene, T.P.; Johnstone, D.; Gusdorf, A.; Francis, L.; DeWitt, C.; Meyer, M.; Tychoniec, Ł.; van Dishoeck, E.F.; et al. Unveiling Two Deeply Embedded Young Protostars in the S68N Class 0 Protostellar Core with JWST/NIRSpec. Astrophys. J. 2025, 985, 225. [Google Scholar] [CrossRef]
- Van Dishoeck, E.F.; Tychoniec, Ł.; Rocha, W.R.M.; Slavicinska, K.; Francis, L.; van Gelder, M.L.; Ray, T.P.; Beuther, H.; Caratti o Garatti, A.; Brunken, N.G.C.; et al. JWST Observations of Young protoStars (JOYS): Overview of program and early results. Astron. Astrophys. 2025, 699, A361. [Google Scholar] [CrossRef]
- Hartigan, P.; Edwards, S.; Ghandour, L. Disk Accretion and Mass Loss from Young Stars. Astrophys. J. 1995, 452, 736. [Google Scholar] [CrossRef]
- Giannini, T.; McCoey, C.; Nisini, B.; Cabrit, S.; Caratti o Garatti, A.; Calzoletti, L.; Flower, D.R. Molecular line emission in HH54: A coherent view from near to far infrared. Astron. Astrophys. 2006, 459, 821–835. [Google Scholar] [CrossRef]
- Muzerolle, J.; Calvet, N.; Hartmann, L. Magnetospheric Accretion Models for the Hydrogen Emission Lines of T Tauri Stars. Astrophys. J. 1998, 492, 743–753. [Google Scholar] [CrossRef]
- Lahuis, F.; van Dishoeck, E.F.; Blake, G.A.; Evans, N.J.; Kessler-Silacci, J.E.; Pontoppidan, K.M. c2d Spitzer IRS Spectra of Disks around T Tauri Stars. III. [Ne II], [Fe I], and H2 Gas-Phase Lines. Astrophys. J. 2007, 665, 492–511. [Google Scholar] [CrossRef]
- Podio, L.; Kamp, I.; Flower, D.; Howard, C.; Sandell, G.; Mora, A.; Aresu, G.; Brittain, S.; Dent, W.R.F.; Pinte, C.; et al. Herschel/PACS observations of young sources in Taurus: The far-infrared counterpart of optical jets. Astron. Astrophys. 2012, 545, A44. [Google Scholar] [CrossRef]
- Plunkett, A.L.; Arce, H.G.; Mardones, D.; van Dokkum, P.; Dunham, M.M.; Fernández-López, M.; Gallardo, J.; Corder, S.A. Episodic molecular outflow in the very young protostellar cluster Serpens South. Nature 2015, 527, 70–73. [Google Scholar] [CrossRef]
- Velusamy, T.; Langer, W.D.; Thompson, T. HiRes Deconvolved Spitzer Images of 89 Protostellar Jets and Outflows: New Data on the Evolution of the Outflow Morphology. Astrophys. J. 2014, 783, 6. [Google Scholar] [CrossRef]
- Hsieh, T.H.; Lai, S.P.; Belloche, A. Widening of Protostellar Outflows: An Infrared Outflow Survey in Low-luminosity Objects. Astron. J. 2017, 153, 173. [Google Scholar] [CrossRef]
- Seale, J.P.; Looney, L.W. Morphological Evolution of Bipolar Outflows from Young Stellar Objects. Astrophys. J. 2008, 675, 427–442. [Google Scholar] [CrossRef]
- Offner, S.S.R.; Lee, E.J.; Goodman, A.A.; Arce, H. Radiation-hydrodynamic Simulations of Protostellar Outflows: Synthetic Observations and Data Comparisons. Astrophys. J. 2011, 743, 91. [Google Scholar] [CrossRef]
- Hollenbach, D. The Physics of Molecular Shocks in YSO Outflows. Symp. Int. Astron. Union 1997, 182, 181–198. [Google Scholar] [CrossRef]
- Raga, A.C.; Canto, J.; Binette, L.; Calvet, N. Stellar Jets with Intrinsically Variable Sources. Astrophys. J. 1990, 364, 601–610. [Google Scholar] [CrossRef]
- Tafalla, M.; Su, Y.N.; Shang, H.; Johnstone, D.; Zhang, Q.; Santiago-García, J.; Lee, C.F.; Hirano, N.; Wang, L.Y. Anatomy of the internal bow shocks in the IRAS 04166+2706 protostellar jet. Astron. Astrophys. 2017, 597, A119. [Google Scholar] [CrossRef]
- Lee, C.F.; Stone, J.M.; Ostriker, E.C.; Mundy, L.G. Hydrodynamic Simulations of Jet- and Wind-driven Protostellar Outflows. Astrophys. J. 2001, 557, 429–442. [Google Scholar] [CrossRef]
- Jhan, K.S.; Lee, C.F. 25 au Angular Resolution Observations of HH 211 with ALMA: Jet Properties and Shock Structures in SiO, CO, and SO. Astrophys. J. 2021, 909, 11. [Google Scholar] [CrossRef]
- Draine, B.T.; Roberge, W.G.; Dalgarno, A. Magnetohydrodynamic shock waves in molecular clouds. Astrophys. J. 1983, 264, 485–507. [Google Scholar] [CrossRef]
- Bachiller, R.; Pérez Gutiérrez, M. Shock Chemistry in the Young Bipolar Outflow L1157. Astrophys. J. 1997, 487, L93–L96. [Google Scholar] [CrossRef]
- Gusdorf, A.; Pineau Des Forêts, G.; Cabrit, S.; Flower, D.R. SiO line emission from interstellar jets and outflows: Silicon-containing mantles and non-stationary shock waves. Astron. Astrophys. 2008, 490, 695–706. [Google Scholar] [CrossRef]
- Tafalla, M.; Santiago-García, J.; Hacar, A.; Bachiller, R. A molecular survey of outflow gas: Velocity-dependent shock chemistry and the peculiar composition of the EHV gas. Astron. Astrophys. 2010, 522, A91. [Google Scholar] [CrossRef]
- Schilke, P.; Walmsley, C.M.; Pineau des Forets, G.; Flower, D.R. SiO production in interstellar shocks. Astron. Astrophys. 1997, 321, 293–304. [Google Scholar]
- Glassgold, A.E.; Mamon, G.A.; Huggins, P.J. The Formation of Molecules in Protostellar Winds. Astrophys. J. 1991, 373, 254. [Google Scholar] [CrossRef]
- Bergin, E.A.; Melnick, G.J.; Neufeld, D.A. The Postshock Chemical Lifetimes of Outflow Tracers and a Possible New Mechanism to Produce Water Ice Mantles. Astrophys. J. 1998, 499, 777–792. [Google Scholar] [CrossRef]
- Nesterenok, A.V. Chemical evolution of the gas in C-type shocks in dark clouds. Astrophys. Space Sci. 2018, 363, 151. [Google Scholar] [CrossRef]
- Arce, H.G.; Santiago-García, J.; Jørgensen, J.K.; Tafalla, M.; Bachiller, R. Complex Molecules in the L1157 Molecular Outflow. Astrophys. J. 2008, 681, L21–L24. [Google Scholar] [CrossRef]
- Visser, R.; Bergin, E.A.; Jørgensen, J.K. Chemical tracers of episodic accretion in low-mass protostars. Astron. Astrophys. 2015, 577, A102. [Google Scholar] [CrossRef]
- Van Dishoeck, E.F.; Kristensen, L.E.; Mottram, J.C.; Benz, A.O.; Bergin, E.A.; Caselli, P.; Herpin, F.; Hogerheijde, M.R.; Johnstone, D.; Liseau, R.; et al. Water in star-forming regions: Physics and chemistry from clouds to disks as probed by Herschel spectroscopy. Astron. Astrophys. 2021, 648, A24. [Google Scholar] [CrossRef]
- Bacciotti, F.; Ray, T.P.; Mundt, R.; Eislöffel, J.; Solf, J. Hubble Space Telescope/STIS Spectroscopy of the Optical Outflow from DG Tauri: Indications for Rotation in the Initial Jet Channel. Astrophys. J. 2002, 576, 222–231. [Google Scholar] [CrossRef]
- Coffey, D.; Bacciotti, F.; Woitas, J.; Ray, T.P.; Eislöffel, J. Rotation of Jets from Young Stars: New Clues from the Hubble Space Telescope Imaging Spectrograph. Astrophys. J. 2004, 604, 758–765. [Google Scholar] [CrossRef]
- Lee, C.F.; Ho, P.T.P.; Palau, A.; Hirano, N.; Bourke, T.L.; Shang, H.; Zhang, Q. Submillimeter Arcsecond-Resolution Mapping of the Highly Collimated Protostellar Jet HH 211. Astrophys. J. 2007, 670, 1188–1197. [Google Scholar] [CrossRef]
- Anderson, J.M.; Li, Z.Y.; Krasnopolsky, R.; Blandford, R.D. Locating the Launching Region of T Tauri Winds: The Case of DG Tauri. Astrophys. J. 2003, 590, L107–L110. [Google Scholar] [CrossRef]
- Ferreira, J.; Dougados, C.; Cabrit, S. Which jet launching mechanism(s) in T Tauri stars? Astron. Astrophys. 2006, 453, 785–796. [Google Scholar] [CrossRef]
- Soker, N. Interaction of young stellar object jets with their accretion disk. Astron. Astrophys. 2005, 435, 125–129. [Google Scholar] [CrossRef]
- Hirota, T.; Machida, M.N.; Matsushita, Y.; Motogi, K.; Matsumoto, N.; Kim, M.K.; Burns, R.A.; Honma, M. Disk-driven rotating bipolar outflow in Orion Source I. Nat. Astron. 2017, 1, 0146. [Google Scholar] [CrossRef]
- Launhardt, R.; Pavlyuchenkov, Y.; Gueth, F.; Chen, X.; Dutrey, A.; Guilloteau, S.; Henning, T.; Piétu, V.; Schreyer, K.; Semenov, D. Rotating molecular outflows: The young T Tauri star in CB 26. Astron. Astrophys. 2009, 494, 147–156. [Google Scholar] [CrossRef]
- Lee, C.F.; Tabone, B.; Cabrit, S.; Codella, C.; Podio, L.; Ferreira, J.; Jacquemin-Ide, J. First Detection of Interaction between a Magnetic Disk Wind and an Episodic Jet in a Protostellar System. Astrophys. J. Lett. 2021, 907, L41. [Google Scholar] [CrossRef]
- López-Vázquez, J.A.; Lee, C.F.; Shang, H.; Cabrit, S.; Krasnopolsky, R.; Codella, C.; Liu, C.F.; Podio, L.; Dutta, S.; Murphy, A.; et al. Multiple Components of the Outflow in the Protostellar System HH 212: Outer Outflow Shell, Rotating Wind, Shocked Wind, and Jet. Astrophys. J. 2024, 977, 126. [Google Scholar] [CrossRef]
- Cabrit, S.; Codella, C.; Gueth, F.; Nisini, B.; Gusdorf, A.; Dougados, C.; Bacciotti, F. PdBI sub-arcsecond study of the SiO microjet in HH212: Origin and collimation of class 0 jets. Astron. Astrophys. 2007, 468, L29–L32. [Google Scholar] [CrossRef]
- Nisini, B.; Bacciotti, F.; Giannini, T.; Massi, F.; Eislöffel, J.; Podio, L.; Ray, T.P. A combined optical/infrared spectral diagnostic analysis of the HH1 jet. Astron. Astrophys. 2005, 441, 159–170. [Google Scholar] [CrossRef]
- Giannini, T.; Nisini, B.; Antoniucci, S.; Alcalá, J.M.; Bacciotti, F.; Bonito, R.; Podio, L.; Stelzer, B.; Whelan, E.T. The Diagnostic Potential of Fe Lines Applied to Protostellar Jets. Astrophys. J. 2013, 778, 71. [Google Scholar] [CrossRef]
- Ellerbroek, L.E.; Podio, L.; Kaper, L.; Sana, H.; Huppenkothen, D.; de Koter, A.; Monaco, L. The outflow history of two Herbig-Haro jets in RCW 36: HH 1042 and HH 1043. Astron. Astrophys. 2013, 551, A5. [Google Scholar] [CrossRef]
- Birney, M.; Dougados, C.; Whelan, E.T.; Nisini, B.; Cabrit, S.; Zhang, Y. A kinematical study of the launching region of the blueshifted HH 46/47 outflow with SINFONI K-band observations. Astron. Astrophys. 2024, 692, A143. [Google Scholar] [CrossRef]
- Federman, S.A.; Megeath, S.T.; Rubinstein, A.E.; Gutermuth, R.; Narang, M.; Tyagi, H.; Manoj, P.; Anglada, G.; Atnagulov, P.; Beuther, H.; et al. Investigating Protostellar Accretion-driven Outflows across the Mass Spectrum: JWST NIRSpec Integral Field Unit 3–5 μm Spectral Mapping of Five Young Protostars. Astrophys. J. 2024, 966, 41. [Google Scholar] [CrossRef]
- Kovalev, Y.Y.; Lister, M.L.; Homan, D.C.; Kellermann, K.I. The Inner Jet of the Radio Galaxy M87. Astrophys. J. 2007, 668, L27–L30. [Google Scholar] [CrossRef]
- Cohen, M.H.; Lister, M.L.; Homan, D.C.; Kadler, M.; Kellermann, K.I.; Kovalev, Y.Y.; Vermeulen, R.C. Relativistic Beaming and the Intrinsic Properties of Extragalactic Radio Jets. Astrophys. J. 2007, 658, 232–244. [Google Scholar] [CrossRef]
- Allen, A.; Li, Z.Y.; Shu, F.H. Collapse of Magnetized Singular Isothermal Toroids. II. Rotation and Magnetic Braking. Astrophys. J. 2003, 599, 363–379. [Google Scholar] [CrossRef]
- Tu, Y.; Li, Z.Y.; Zhu, Z.; Hsu, C.Y.; Hu, X. Modeling YSO Jets in 3D I: Highly Variable Asymmetric Magnetic Pressure-Driven Jets in the Polar Cavity from Toroidal Fields Generated by Inner Disk Accretion. Astrophys. J. 2025, 988, 107. [Google Scholar] [CrossRef]
- Tu, Y.; Li, Z.Y.; Zhu, Z.; Hu, X.; Hsu, C.Y. YSO Jets Driven by Magnetic Pressure Generated through Stellar Magnetosphere-Disk Interaction. arXiv 2025, arXiv:2506.11333. [Google Scholar] [CrossRef]
- Ellerbroek, L.E.; Podio, L.; Dougados, C.; Cabrit, S.; Sitko, M.L.; Sana, H.; Kaper, L.; de Koter, A.; Klaassen, P.D.; Mulders, G.D.; et al. Relating jet structure to photometric variability: The Herbig Ae star HD 163296. Astron. Astrophys. 2014, 563, A87. [Google Scholar] [CrossRef]
- Lee, C.F.; Hirano, N.; Zhang, Q.; Shang, H.; Ho, P.T.P.; Mizuno, Y. Jet Motion, Internal Working Surfaces, and Nested Shells in the Protostellar System HH 212. Astrophys. J. 2015, 805, 186. [Google Scholar] [CrossRef]
- Vorobyov, E.I.; Basu, S. Variable Protostellar Accretion with Episodic Bursts. Astrophys. J. 2015, 805, 115. [Google Scholar] [CrossRef]
- Masciadri, E.; de Gouveia Dal Pino, E.M.; Raga, A.C.; Noriega-Crespo, A. The Precession of the Giant HH 34 Outflow: A Possible Jet Deceleration Mechanism. Astrophys. J. 2002, 580, 950–958. [Google Scholar] [CrossRef]
- Lee, C.F.; Hasegawa, T.I.; Hirano, N.; Palau, A.; Shang, H.; Ho, P.T.P.; Zhang, Q. The Reflection-Symmetric Wiggle of the Young Protostellar Jet HH 211. Astrophys. J. 2010, 713, 731–737. [Google Scholar] [CrossRef]
- Fischer, W.J.; Hillenbrand, L.A.; Herczeg, G.J.; Johnstone, D.; Kospal, A.; Dunham, M.M. Accretion Variability as a Guide to Stellar Mass Assembly. arXiv 2023, arXiv:2203.11257. [Google Scholar] [CrossRef]
- Federman, S.; Megeath, S.T.; Tobin, J.J.; Sheehan, P.D.; Pokhrel, R.; Habel, N.; Stutz, A.M.; Fischer, W.J.; Hartmann, L.; Stanke, T.; et al. 300: An ACA 870 μm Continuum Survey of Orion Protostars and Their Evolution. Astrophys. J. 2023, 944, 49. [Google Scholar] [CrossRef]
- Zinnecker, H.; McCaughrean, M.J.; Rayner, J.T. A symmetrically pulsed jet of gas from an invisible protostar in Orion. Nature 1998, 394, 862–865. [Google Scholar] [CrossRef]
- Raga, A.C.; Velázquez, P.F.; Cantó, J.; Masciadri, E. The time-dependent ejection velocity histories of HH 34 and HH 111. Astron. Astrophys. 2002, 395, 647–656. [Google Scholar] [CrossRef]
- Herczeg, G.J.; Johnstone, D.; Mairs, S.; Hatchell, J.; Lee, J.E.; Bower, G.C.; Chen, H.R.V.; Aikawa, Y.; Yoo, H.; Kang, S.J.; et al. How Do Stars Gain Their Mass? A JCMT/SCUBA-2 Transient Survey of Protostars in Nearby Star-forming Regions. Astrophys. J. 2017, 849, 43. [Google Scholar] [CrossRef]
- Lee, Y.H.; Johnstone, D.; Lee, J.E.; Herczeg, G.; Mairs, S.; Contreras-Peña, C.; Hatchell, J.; Naylor, T.; Bell, G.S.; Bourke, T.L.; et al. The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars. Astrophys. J. 2021, 920, 119. [Google Scholar] [CrossRef]
- Park, W.; Lee, J.E.; Contreras Peña, C.; Johnstone, D.; Herczeg, G.; Lee, S.; Lee, S.; Bhardwaj, A.; Moriarty-Schieven, G.H. Quantifying Variability of Young Stellar Objects in the Mid-infrared Over 6 Years with the Near-Earth Object Wide-field Infrared Survey Explorer. Astrophys. J. 2021, 920, 132. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Bjerkeli, P.; van der Wiel, M.H.D.; Harsono, D.; Ramsey, J.P.; Jørgensen, J.K. Resolved images of a protostellar outflow driven by an extended disk wind. Nature 2016, 540, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Tabone, B.; Cabrit, S.; Pineau des Forêts, G.; Ferreira, J.; Gusdorf, A.; Podio, L.; Bianchi, E.; Chapillon, E.; Codella, C.; Gueth, F. Constraining MHD disk winds with ALMA: Apparent rotation signatures and application to HH212. Astron. Astrophys. 2020, 640, A82. [Google Scholar] [CrossRef]
- Shang, H.; Li, Z.Y.; Hirano, N. Jets and Bipolar Outflows from Young Stars: Theory and Observational Tests. In Protostars Planets V; University of Arizona Press: Tucson, AZ, USA, 2007; Volume 261. [Google Scholar]
- Ricci, L.; Harter, S.K.; Ercolano, B.; Weber, M. Testing Photoevaporation and MHD Disk Wind Models through Future High-angular Resolution Radio Observations: The Case of TW Hydrae. Astrophys. J. 2021, 913, 122. [Google Scholar] [CrossRef]
- Hu, X.; Bae, J.; Zhu, Z.; Wang, L. Observational Signatures of Disk Winds in Protoplanetary Disks: Differentiating Magnetized and Photoevaporative Outflows with Fully Coupled Thermochemistry. Astrophys. J. 2025, 986, 161. [Google Scholar] [CrossRef]
- Matt, S.; Pudritz, R.E. Accretion-powered Stellar Winds as a Solution to the Stellar Angular Momentum Problem. Astrophys. J. 2005, 632, L135–L138. [Google Scholar] [CrossRef]
- Pontoppidan, K.M.; Barrientes, J.; Blome, C.; Braun, H.; Brown, M.; Carruthers, M.; Coe, D.; DePasquale, J.; Espinoza, N.; Marin, M.G.; et al. The JWST Early Release Observations. Astrophys. J. Lett. 2022, 936, L14. [Google Scholar] [CrossRef]
- Bai, X.N. Towards a Global Evolutionary Model of Protoplanetary Disks. Astrophys. J. 2016, 821, 80. [Google Scholar] [CrossRef]
- Nakatani, R.; Kobayashi, H.; Kuiper, R.; Nomura, H.; Aikawa, Y. Photoevaporation of Grain-depleted Protoplanetary Disks around Intermediate-mass Stars: Investigating the Possibility of Gas-rich Debris Disks as Protoplanetary Remnants. Astrophys. J. 2021, 915, 90. [Google Scholar] [CrossRef]
- McMullin, J.P.; Waters, B.; Schiebel, D.; Young, W.; Golap, K. CASA Architecture and Applications. In Astronomical Data Analysis Software and Systems XVI, Proceedings of the Meeting Held at the Westin La Paloma Resort & Spa, Tucson, AZ, USA, 15–18 October, 2006; ASP Conference Series; Shaw, R.A., Hill, F., Bell, D.J., Eds.; University of Chicago: Chicago, IL, USA, 2007; Volume 376, p. 127. [Google Scholar]
- Astropy Collaboration; Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M.; et al. Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutta, S. Jets in Low-Mass Protostars. Universe 2025, 11, 333. https://doi.org/10.3390/universe11100333
Dutta S. Jets in Low-Mass Protostars. Universe. 2025; 11(10):333. https://doi.org/10.3390/universe11100333
Chicago/Turabian StyleDutta, Somnath. 2025. "Jets in Low-Mass Protostars" Universe 11, no. 10: 333. https://doi.org/10.3390/universe11100333
APA StyleDutta, S. (2025). Jets in Low-Mass Protostars. Universe, 11(10), 333. https://doi.org/10.3390/universe11100333