Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = submersible holographic camera

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4622 KiB  
Article
Plankton Concentration Model Consistent with Natural Events and Monitoring Series of Holographic Measurements
by Victor Dyomin, Daria Kurkova, Alexandra Davydova, Igor Polovtsev and Sergey Morgalev
J. Mar. Sci. Eng. 2025, 13(1), 140; https://doi.org/10.3390/jmse13010140 - 15 Jan 2025
Viewed by 905
Abstract
This paper considers the features of a time series of plankton concentrations, which are further compared with such phenomena as the alteration of day and night and tidal processes. The analysis of experimental data recorded as a result of long-term monitoring measurements under [...] Read more.
This paper considers the features of a time series of plankton concentrations, which are further compared with such phenomena as the alteration of day and night and tidal processes. The analysis of experimental data recorded as a result of long-term monitoring measurements under field conditions showed that the diurnal variability in plankton concentrations can be described using a model harmonic function. At the same time, based on the parameters of the diurnal variability model, it is possible to build a bioindication system to detect the influence of abnormal environmental factors estimated as pollution. This study discusses the ideology of building such a system based on regular observations of the behavior of autochthonous plankton using a submersible digital holographic camera. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

17 pages, 3481 KiB  
Article
Monitoring Bioindication of Plankton through the Analysis of the Fourier Spectra of the Underwater Digital Holographic Sensor Data
by Victor Dyomin, Alexandra Davydova, Nikolay Kirillov, Oksana Kondratova, Yuri Morgalev, Sergey Morgalev, Tamara Morgaleva and Igor Polovtsev
Sensors 2024, 24(7), 2370; https://doi.org/10.3390/s24072370 - 8 Apr 2024
Cited by 3 | Viewed by 1269
Abstract
The study presents a bioindication complex and a technology of the experiment based on a submersible digital holographic camera with advanced monitoring capabilities for the study of plankton and its behavioral characteristics in situ. Additional mechanical and software options expand the capabilities of [...] Read more.
The study presents a bioindication complex and a technology of the experiment based on a submersible digital holographic camera with advanced monitoring capabilities for the study of plankton and its behavioral characteristics in situ. Additional mechanical and software options expand the capabilities of the digital holographic camera, thus making it possible to adapt the depth of the holographing scene to the parameters of the plankton habitat, perform automatic registration of the “zero” frame and automatic calibration, and carry out natural experiments with plankton photostimulation. The paper considers the results of a long-term digital holographic experiment on the biotesting of the water area in Arctic latitudes. It shows additional possibilities arising during the spectral processing of long time series of plankton parameters obtained during monitoring measurements by a submersible digital holographic camera. In particular, information on the rhythmic components of the ecosystem and behavioral characteristics of plankton, which can be used as a marker of the ecosystem well-being disturbance, is thus obtained. Full article
Show Figures

Figure 1

15 pages, 5157 KiB  
Article
Geometric-Optical Model of Digital Holographic Particle Recording System and Features of Its Application
by Victor Dyomin, Alexandra Davydova and Igor Polovtsev
Photonics 2024, 11(1), 73; https://doi.org/10.3390/photonics11010073 - 11 Jan 2024
Cited by 2 | Viewed by 1487
Abstract
The paper proposes an equivalent optical scheme of an in-line digital holographic system for particle recording and a mathematical model that establishes a one-to-one correspondence between the dimensional and spatial parameters of a digital holographic image of a particle and the imaged particle [...] Read more.
The paper proposes an equivalent optical scheme of an in-line digital holographic system for particle recording and a mathematical model that establishes a one-to-one correspondence between the dimensional and spatial parameters of a digital holographic image of a particle and the imaged particle itself. The values of the model coefficients used to determine the real size and longitudinal coordinate of a particle according to its holographic image are found by calibration. The model was tested in field and laboratory conditions to calibrate a submersible digital holographic camera designed to study plankton in its habitat. It was shown that four calibration measurements are sufficient enough to determine the model coefficients, and the developed design of the submersible digital holographic camera makes it possible to perform these measurements during the recording of each hologram. In addition, this neither requires data on the refractive index of the medium with particles nor on the parameters of the optical elements of the scheme. The paper presents the results of marine experiments in the Kara Sea and the Laptev Sea, as well as in fresh water in laboratory conditions and in Lake Baikal. The error in measuring the particle size in seawater without the use of the model is 53.8%, while the error in determining their longitudinal coordinates is 79.3%. In fresh water, the same errors were 59% and 54.5%, respectively. The error in determining the position of a particle with the use of the designed mathematical model does not exceed 1.5%, and the error in determining the size is 4.8%. The model is sensitive to changes in the optical properties of the medium, so it is necessary to perform calibration in each water area, and one calibration is quite sufficient within the same water area. At the same time, the developed design of the submersible holographic camera allows, if necessary, calibration at each holographing of the medium volume with particles. Full article
Show Figures

Figure 1

19 pages, 3211 KiB  
Article
Phototactic Behavioral Responses of Mesozooplankton in the Barents Sea as an Indicator of Anthropogenic Impact
by Victor Dyomin, Yuri Morgalev, Sergey Morgalev, Alexandra Davydova, Oksana Kondratova, Tamara Morgaleva and Igor Polovtsev
Water 2023, 15(22), 3901; https://doi.org/10.3390/w15223901 - 8 Nov 2023
Cited by 2 | Viewed by 1718
Abstract
The behavioral responses of autochthonous organisms have recently been used for a system to monitor the state of fresh and sea waters for bioindication. The advantage of using the behavioral responses of mesozooplankton is determined by the higher sensitivity of such responses compared [...] Read more.
The behavioral responses of autochthonous organisms have recently been used for a system to monitor the state of fresh and sea waters for bioindication. The advantage of using the behavioral responses of mesozooplankton is determined by the higher sensitivity of such responses compared with changes in the composition of biota or the death of organisms. Earlier, we developed and tested in laboratory conditions and in freshwater reservoirs a submersible digital holographic camera as part of a hydrobiological probe, which allows one to determine the dimensions, shape and recognition of plankters in situ, as well as define the concentration of plankters in the working volume and perform photostimulation with attractive radiation with different levels of illuminance. This paper presents the data obtained during the expedition to the Barents Sea. The variability with regard to the immersion depth of the phototropic response and the interspecific and intraspecific diversity was determined. It was shown that within the framework of natural variability in natural factors (temperature, salinity, hydrostatic pressure, oxygen content, illumination) there are no reliable changes in the indicator response, unlike changes in the concentration of plankton associated with tidal currents. The anthropogenic distortion of water quality was modeled by introducing a saturated salt solution dropwise. There were no significant changes in the intraspecific and interspecific diversity index during the external impact, and the rhythms of tidal changes in the concentration of plankters were suppressed. The fact of increased phototropic sensitivity in crustaceans with a size of less than 120 μm was found. It was established that the most essential marker of the alternating factor was the suppression of the phototropic response. The identified patterns of behavioral responses of autochthonous zooplankton make it possible to create a network of continuous control over the environmental health of water bodies subject to increased anthropogenic impact (oil production zones beyond the Arctic Circle, estuaries and deltas of rivers carrying industrial waste). Full article
Show Figures

Figure 1

16 pages, 3995 KiB  
Article
Phototropic Behavioral Responses of Zooplankton in Lake Baikal In Situ and during the Anthropogenic Impact Modeling
by Victor Dyomin, Yuri Morgalev, Igor Polovtsev, Sergey Morgalev, Tamara Morgaleva, Alexandra Davydova and Oksana Kondratova
Water 2023, 15(16), 2957; https://doi.org/10.3390/w15162957 - 16 Aug 2023
Cited by 4 | Viewed by 1399
Abstract
Earlier, we showed that the registration of the behavioral responses of autochthonous mesozooplankton communities in situ is a more dynamic methodological approach in the biological assessment of the environmental well-being of aquatic ecosystems, as well as an alternative method to generally accepted tests [...] Read more.
Earlier, we showed that the registration of the behavioral responses of autochthonous mesozooplankton communities in situ is a more dynamic methodological approach in the biological assessment of the environmental well-being of aquatic ecosystems, as well as an alternative method to generally accepted tests on mortality and immobilization. The change in behavioral responses, including phototropic responses, may occur at lower concentrations of pollutants, leading to the inhibition of the risk-avoidance response of predatory fish attack and, ultimately, to the change in zooplankton abundance and biodiversity. The biological significance of such changes is quite high since zooplankters form the basis of food chains. This work studies the possibility of biomonitoring the quality of fresh water in Lake Baikal according to the state of the autochthonous mesozooplankton community in summer and winter using a digital holographic camera developed and tested by us in laboratory conditions. This method makes it possible to determine the concentration of plankters in the controlled volume of the DHC and perform photostimulation with different levels of illuminance. The depth profilometry of the phototropic response was compared with the profilometry of plankton concentration, intraspecific diversity of crustaceans according to the Pielou index, and the results of catching using the Juday net in the natural environment of the lake and during the modeling of the anthropogenic impact (introduction of table salt solution into the local area close to the registration probe). The circadian rhythm parameters were determined by the spectral analysis of the long-term registration of the phototropic response dynamics. It was noted that the inhibition of the phototropic response was the most adequate marker of the exogenous impact and the appearance of an alternating factor among the studied indicators of the state of the plankton community, namely, intraspecific diversity, synchronism of circadian rhythms, and response to paired photostimulation. The revealed patterns of behavioral responses of autochthonous zooplankton in natural and artificially modified conditions will allow for the implementation of long-term continuous control over the environmental well-being of water areas, including the collection ponds of treatment facilities, cooling ponds of nuclear power plants, and other water areas in contact with potentially hazardous facilities. The comparison of the identified patterns with the behavioral responses of euryhaline mesozooplankton will expand this method to assess the well-being of salt-water and marine reservoirs under the anthropogenic impact and will make it possible to create a continuous monitoring system. Full article
Show Figures

Figure 1

19 pages, 7210 KiB  
Article
Features of the Application of Coherent Noise Suppression Methods in the Digital Holography of Particles
by Victor Dyomin, Alexandra Davydova, Nikolay Kirillov and Igor Polovtsev
Appl. Sci. 2023, 13(15), 8685; https://doi.org/10.3390/app13158685 - 27 Jul 2023
Cited by 3 | Viewed by 1250
Abstract
The paper studies the influence of coherent noises on the quality of images of particles reconstructed from digital holograms. Standard indicators (for example, signal-to-noise ratio) and such indicators as the boundary contrast and boundary intensity jump previously proposed by the authors are used [...] Read more.
The paper studies the influence of coherent noises on the quality of images of particles reconstructed from digital holograms. Standard indicators (for example, signal-to-noise ratio) and such indicators as the boundary contrast and boundary intensity jump previously proposed by the authors are used to quantify the image quality. With the use of these parameters, for examples of some known methods of suppressing coherent noises in a holographic image (eliminating the mutual influence of virtual and real images in in-line holography, and time averaging), the features and ranges of applicability of such correction were determined. It was shown that the use of the complex field amplitude reconstruction method based on the Gerchberg–Saxton algorithm and the spatial-frequency method improves the quality of determining the particle image boundary (by boundary intensity jump) starting from the distance between a hologram and a particle, which is about twice the Rayleigh distance. In physical experiments with model particles, averaging methods were studied to suppress non-stationary coherent noises (speckles). It was also shown that averaging over three digital holograms or over three holographic images is sufficient to provide a quality of particle image boundary suitable for particle recognition. In the case of multiple scattering, when it is necessary to impose a limit on the working volume length (depth of scene) of the holographic camera, the paper provides estimates that allow selecting the optimal working volume length. The estimates were made using the example of a submersible digital holographic camera for plankton studies. Full article
(This article belongs to the Special Issue Digital Holography: Novel Techniques and Its Applications)
Show Figures

Figure 1

19 pages, 5685 KiB  
Article
Environmental Contamination with Micro- and Nanoplastics Changes the Phototaxis of Euryhaline Zooplankton to Paired Photostimulation
by Yuri Morgalev, Victor Dyomin, Sergey Morgalev, Alexandra Davydova, Tamara Morgaleva, Oksana Kondratova, Igor Polovtsev, Nikolay Kirillov and Alexey Olshukov
Water 2022, 14(23), 3918; https://doi.org/10.3390/w14233918 - 1 Dec 2022
Cited by 10 | Viewed by 2293
Abstract
Our earlier studies showed that paired photostimulation allows the detection of pollutants in an aqueous medium according to the behavioral responses of freshwater Crustacea. The first stimulus initiated and stabilized the behavioral response. The increase in response to the second stimulus made [...] Read more.
Our earlier studies showed that paired photostimulation allows the detection of pollutants in an aqueous medium according to the behavioral responses of freshwater Crustacea. The first stimulus initiated and stabilized the behavioral response. The increase in response to the second stimulus made it possible to assess the responsiveness of the zooplankton community. This paper studies the validity of this method for the detection of micro- and nanoplastic contamination of saltwater reservoirs according to the behavioral response of Artemia salina and Moina salina crustaceans. The studies were conducted in laboratory conditions using a submersible holographic camera developed by us, which ensures the in situ detection of the concentration and speed of crustaceans in a volume of up to 1 dm3, as well as makes it possible to change the intensity and duration of the attracting light. It was established that the phototropic response of crustaceans decreases in seawater at the cumulative dose of exposure to microplastics—0.15 mg∙dm−3∙h and nanoplastics—0.3 mg∙dm−3∙h. The paired photostimulation reveals the altering effect of micro- and nanoplastics in the saltwater medium no later than 3 h after their appearance, which indicates the promising potential of this method for the alarm response in monitoring the environmental well-being of water bodies. Full article
Show Figures

Figure 1

22 pages, 9740 KiB  
Article
Study of Marine Particles Using Submersible Digital Holographic Camera during the Arctic Expedition
by Victor Dyomin, Igor Semiletov, Denis Chernykh, Elena Chertoprud, Alexandra Davydova, Nikolay Kirillov, Olga Konovalova, Alexey Olshukov, Aleksandr Osadchiev and Igor Polovtsev
Appl. Sci. 2022, 12(21), 11266; https://doi.org/10.3390/app122111266 - 7 Nov 2022
Cited by 13 | Viewed by 2356
Abstract
The paper presents the results of in situ studies of marine particles of different nature using a submersible digital holographic camera (DHC) during the Arctic expedition. It also describes the features, performance specifications, and possibilities of the DHC and the DHC technology. The [...] Read more.
The paper presents the results of in situ studies of marine particles of different nature using a submersible digital holographic camera (DHC) during the Arctic expedition. It also describes the features, performance specifications, and possibilities of the DHC and the DHC technology. The DHC technology can be used for noninvasive automatic evaluation of spatial and temporal characteristics of plankton, including the distribution of plankton concentrations. The comparison of quantitative analysis of zooplankton net samples and classification results using the DHC revealed that the error of the DHC classification of mesoplankton at the level of the main systematic orders was about 30%. The results of determining the data on the medium, such as water turbidity, according to the radiation shielding factor (degree) by the particles of the Suspension taxon using the DHC technology are presented; the prospects for studying the size of gas bubbles and their volume content according to the Bubble taxon data are shown. The use of holographic data for in situ point estimates is considered. Full article
(This article belongs to the Special Issue Holographic Technologies: Theory and Practice)
Show Figures

Figure 1

17 pages, 5342 KiB  
Article
In Situ Measurements of Plankton Biorhythms Using Submersible Holographic Camera
by Victor Dyomin, Alexandra Davydova, Nikolay Kirillov, Sergey Morgalev, Elena Naumova, Alexey Olshukov and Igor Polovtsev
Sensors 2022, 22(17), 6674; https://doi.org/10.3390/s22176674 - 3 Sep 2022
Cited by 6 | Viewed by 2196
Abstract
The paper presents a diagnostic complex for plankton studies using the miniDHC (digital holographic camera). Its capabilities to study the rhythmic processes in plankton ecosystems were demonstrated using the natural testing in Lake Baikal in summer. The results of in situ measurements of [...] Read more.
The paper presents a diagnostic complex for plankton studies using the miniDHC (digital holographic camera). Its capabilities to study the rhythmic processes in plankton ecosystems were demonstrated using the natural testing in Lake Baikal in summer. The results of in situ measurements of plankton to detect the synchronization of collective biological rhythms with medium parameters are presented and interpreted. The most significant rhythms in terms of the correlation of their parameters with medium factors are identified. The study shows that the correlation with water temperature at the mooring site has the greatest significance and reliability. The results are verified with biodiversity data obtained by the traditional mesh method. The experience and results of the study can be used for the construction of a stationary station to monitor the ecological state of the water area through the digitalization of plankton behavior. Full article
(This article belongs to the Special Issue Marine Sensors: Recent Advances and Challenges, Volume II)
Show Figures

Figure 1

Back to TopTop