Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = straight skeletons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3732 KiB  
Article
The Construction and Investigation of Two-Dimensional Re-Entrant Multiphase Honeycomb Lattice Metafluid
by Dongliang Pei, Hao Song, Lin Su and Shanjun Li
Appl. Sci. 2025, 15(4), 2152; https://doi.org/10.3390/app15042152 - 18 Feb 2025
Cited by 1 | Viewed by 482
Abstract
Compared to conventional materials, underwater metamaterials possess numerous advantages in the manipulation of sound waves, which have garnered increasing attention. In terms of composition, commonly studied underwater wideband metamaterials can be classified into solid-phase pentamode metafluid and water–solid coupling metafluid. The concept of [...] Read more.
Compared to conventional materials, underwater metamaterials possess numerous advantages in the manipulation of sound waves, which have garnered increasing attention. In terms of composition, commonly studied underwater wideband metamaterials can be classified into solid-phase pentamode metafluid and water–solid coupling metafluid. The concept of multiphase design in pentamode metafluid allows for decoupling the regulation of equivalent density from that of the equivalent bulk modulus, facilitating more convenient structural design. In typical auxetic metamaterial structure designs, the “re-entrant” mechanism is commonly employed; the skeleton is inwardly bent to a certain extent, enabling the design of a low volume-modulus for each cell. Consequently, a novel type of water–solid coupling metafluid is devised by combining the concepts of “multiphase” and “re-entrant”. Firstly, a straight-sided skeleton (referred to as “ss” skeletal) unit cell is designed, and its compression wave frequency band is determined through analysis of its band characteristics and related vibration modes. Subsequently, the “re-entrant” (referred to as “re”) mechanism is introduced into a unit cell, revealing an increase in equivalent density while decreasing the equivalent volume modulus due to this feature. The bent skeleton provides lower bulk modulus, while multiphase (referred to as “mp”) counterweighting offers higher equivalent density; their combination enables designing more impedance-matched metafluid. Then, a unit cell is designed utilizing both “re” and “mp” characteristics. Finally, acoustic performance simulations and analyses verify that both types exhibit excellent broadband water-like properties within the frequency range of 5000–27,000 Hz. In order to further validate the reliability of the design concept, two pairs of underwater metafluid cells with an impedance-matching effect were subsequently developed, demonstrating sound speeds that are half and one-third that of water, respectively. The skeleton thickness of the “re” cell was moderately enhanced compared to that of the straight side cell, thereby presenting an innovative approach for designing robust underwater metafluid cells. Full article
(This article belongs to the Special Issue Recent Advances in Underwater Acoustic Signal Processing)
Show Figures

Figure 1

18 pages, 4692 KiB  
Article
Horizontal Hysteretic Behavior of Circular Concrete-Filled Steel Tubular Columns with Ultra-Large Diameter-to-Thickness Ratios
by Jun Wei, Bo Hu, Zhenshan Wang and Hao Meng
Buildings 2024, 14(8), 2313; https://doi.org/10.3390/buildings14082313 - 26 Jul 2024
Viewed by 876
Abstract
Thin-walled concrete-filled steel tubes are efficient and economical with promising applications in civil and light industrial buildings. However, their local buckling resistance and deformation capacity are low, which adversely affects the seismic safety of structures. There are relatively few studies on thin-walled concrete-filled [...] Read more.
Thin-walled concrete-filled steel tubes are efficient and economical with promising applications in civil and light industrial buildings. However, their local buckling resistance and deformation capacity are low, which adversely affects the seismic safety of structures. There are relatively few studies on thin-walled concrete-filled steel tubular columns with ultra-large diameter-to-thickness ratios, and there is also a lack of relevant experimental research on them. In this study, horizontal hysteresis tests were conducted on concrete columns with a large diameter-to-thickness ratio. The seismic performances of regular and straight-ribbed specimens were analyzed and compared, including the analyses of load-displacement hysteresis curves, strain distribution, skeleton curves, ductility, and energy dissipation capacity. Using these results, a restoring force model for concrete columns with a large diameter-to-thickness ratio was established. The findings indicate that under horizontal loading, the ductility of concrete columns with a regular thin-walled steel tube is 3.9, with an equivalent viscous damping coefficient of 1.65. Meanwhile, the ultimate bearing capacity is 201 kN. After adding stiffening ribs, the ultimate bearing capacity reaches 266 kN and the ductility coefficient reaches 4.4, resulting in the stiffeners increasing the ultimate bearing capacity and ductility by >30% and 12.8%, respectively. However, they have a less pronounced effect on deformation and energy dissipation. Building on these research outcomes, we propose a dimensionless three-line skeleton curve model and a restoring force model. The calculation results from these models align well with the test results, offering valuable insights for the seismic safety analysis of real-world engineering structures. Full article
Show Figures

Figure 1

23 pages, 16086 KiB  
Article
A 3D Printed Anatomically Pre-Contoured Plate for the Treatment of Y-T Humeral Condylar Fractures: A Feline Cadaveric Study
by Piotr Trębacz, Jan Frymus, Anna Barteczko, Mateusz Pawlik, Aleksandra Kurkowska and Michał Czopowicz
Animals 2024, 14(4), 537; https://doi.org/10.3390/ani14040537 - 6 Feb 2024
Cited by 1 | Viewed by 2190
Abstract
(1) Background: Anatomically pre-contoured plates usually require only minimal or even no intraoperative contouring. For complex cases, such plates also assist the surgeon as an anatomical template during fracture reduction. In this study, we present our experience of using a 3D printing technology [...] Read more.
(1) Background: Anatomically pre-contoured plates usually require only minimal or even no intraoperative contouring. For complex cases, such plates also assist the surgeon as an anatomical template during fracture reduction. In this study, we present our experience of using a 3D printing technology for the treatment of bicondylar humeral fractures in feline cadavers. (2) Methods: Surgeries were performed on 15 pairs of front limbs amputated at the scapula. The limbs were obtained from 15 adult cats without obvious pathology of the skeleton. After flexion of the elbow and subperiosteal elevation of the anconeus muscle, the humeral Y-T fractures were created using a bone chisel and mallet. A custom-made anatomically pre-contoured interlocking plate was used to reduce and stabilise the medial aspect of the humeral condyle to the humeral diaphysis. After reduction of the humeral condyle, a positional locking screw was then inserted from the medial to the lateral side and a straight 2.4/2.7 interlocking bone plate was used to stabilise the lateral part of the condyle to the humeral diaphysis. (3) Results: The length of the humerus ranged from 98.2 to 107.0 mm and did not differ significantly between the left and right bone. The diameter of the isthmus of the humeral condyle ranged from 5.2 to 5.5 mm and did not differ significantly between the left and right bone. In all 30 limbs, bicondylar fracture was accompanied by epicondylar comminution. In 7/30 limbs (4 left, 3 right) the fracture of the humeral shaft was also present. In the left limbs, the postoperative articular surface defect of the humeral condyle was small (<1 mm) in 11/15 cases, moderate (1–2 mm) in 2/15 cases and large (>2 mm) in 2/15 cases in which the condylar screw was incorrectly inserted. In the right limbs, the postoperative articular surface defect of the humeral condyle was small (<1 mm) in 14/15 cases and moderate (1–2 mm) in 1 case. (4) Conclusions: 3D printing and the technology of metal powder sintering offers a wide range of possibilities for the development of new surgical implants. The anatomically pre-contoured bone plate appears to be a valuable tool in the reduction and stabilisation of Y-T humeral fractures in adult domestic cats weighing 3.0 to 4.5 kg. Full article
Show Figures

Figure 1

18 pages, 9267 KiB  
Article
Study on Reciprocating Loading Tests and Moment-Rotation Theory of Straight-Tenon Joints in Traditional Wooden Structures
by Shibin Yu, Wen Pan, Hexian Su and Liaoyuan Ye
Forests 2023, 14(12), 2424; https://doi.org/10.3390/f14122424 - 12 Dec 2023
Viewed by 1458
Abstract
For the study of the mechanical properties of straight-tenon joints in traditional wooden structures, three specimens of T-shaped straight-tenon joints were made according to actual structures and subjected to reciprocating loading tests. The variation rules of different seismic performance indexes such as moment-rotation [...] Read more.
For the study of the mechanical properties of straight-tenon joints in traditional wooden structures, three specimens of T-shaped straight-tenon joints were made according to actual structures and subjected to reciprocating loading tests. The variation rules of different seismic performance indexes such as moment-rotation hysteresis curve, skeleton curve, stiffness, and energy dissipation capacity of the specimens were analyzed through tests. Based on the geometric deformation and static equilibrium conditions, the moment-rotation theoretical model of straight-tenon joints is derived and compared with the experimental results. The studies show that the hysteresis curve of joints under reciprocating loading consists of four stages: ascending, stress relaxation, descending, and sliding. The moment capacity of joints increases gradually with the rotational deformation, but the internal gap of the joints increases synchronously, resulting in a serious attenuation of the stiffness. Tenon and mortise plastic extrusion deformation and friction can dissipate energy, as the rotational deformation increases energy consumption, while the hysteresis loop “pinch” effect is more serious, and the equivalent viscous damping coefficient is gradually reduced. The prediction results of the joint moment-rotation theoretical model are closer to the experimental results, which can provide a theoretical basis for the overall seismic analysis of traditional wooden structures. Full article
(This article belongs to the Special Issue Advances in the Study of Wood Mechanical and Physical Properties)
Show Figures

Figure 1

15 pages, 16592 KiB  
Article
Which of the 37 Plates Is the Most Mechanically Appropriate for a Low-Neck Fracture of the Mandibular Condyle? A Strength Testing
by Jakub Okulski, Marcin Kozakiewicz, Michał Krasowski, Rafał Zieliński and Tomasz Wach
J. Clin. Med. 2023, 12(21), 6705; https://doi.org/10.3390/jcm12216705 - 24 Oct 2023
Cited by 1 | Viewed by 1369
Abstract
(1) Background: The mandible is the most frequently injured component of the facial skeleton, with 25–45% of mandibular fractures involving the condylar process. This study aims to mechanically compare which plates are most suitable for use in low-neck fractures of the condyle. (2) [...] Read more.
(1) Background: The mandible is the most frequently injured component of the facial skeleton, with 25–45% of mandibular fractures involving the condylar process. This study aims to mechanically compare which plates are most suitable for use in low-neck fractures of the condyle. (2) Methods: Polyurethane mandibular models with simulated low-neck fractures were tested using 37 distinct plate designs. These plates were fabricated from 1 mm thick, grade 23 titanium sheets. The models were then subjected to force tests on a strength machine, and the correlation between applied force and fracture displacement was recorded. (3) Results: For low-neck fractures, XCP side-dedicated 3+5 and ACP-T plates demonstrated strength comparable to that of two straight plates, the current gold standard in osteosynthesis. (4) Conclusions: The Mechanical Excellence Factor (MEF) introduced by the authors provides a more accurate metric for theoretically predicting a plate’s mechanical strength compared to the Plate Design Factor (PDF). Eight plate characteristics were utilized to calculate the MEF. Employing the MEF allows for rapid, preliminary validation before undertaking strength tests. Furthermore, the findings of this study can guide the selection of the most durable plate designs for subsequent fatigue testing. Full article
(This article belongs to the Special Issue Treatment of Facial Fracture)
Show Figures

Figure 1

10 pages, 7183 KiB  
Article
Evaluation of the Relationship of Screw Pullout and Plate Fracutre in Fixation of Mandible Condyle Fractures: A Mechanistic Study
by Jakub Okulski, Marcin Kozakiewicz, Rafał Zieliński, Michał Krasowski and Bartłomiej Konieczny
J. Clin. Med. 2023, 12(13), 4380; https://doi.org/10.3390/jcm12134380 - 29 Jun 2023
Viewed by 1482
Abstract
Background: The mandible is the most injured part of the facial skeleton, and 25–40% of mandibular fractures involve the condyle process. The aim of this study is to answer the question of the relationship between screw pullout and/or plate fracture during osteosynthesis. Methods: [...] Read more.
Background: The mandible is the most injured part of the facial skeleton, and 25–40% of mandibular fractures involve the condyle process. The aim of this study is to answer the question of the relationship between screw pullout and/or plate fracture during osteosynthesis. Methods: We tested polyurethane models of mandibles whose condylar process was cut (simulating a fracture) and fused using plates and screws. Results: A total of 672 plates were tested. A total of 25.6% of them were fractured during the test, with most being fractures of the base of the condyle. More screws (81.97%) are pulled out from the ramus than from the condyle—69.15%. Conclusions: The gold standard in the osteosynthesis of condylar fractures is two straight plates. Other than these, there is no one-size-fits-all plate for every type of fracture. Plates fixed with fewer screws (smaller plates used in higher-lying fractures) are more likely to result in screw pullout. On the other hand, in plates fixed with more screws, plate fracture is more common. Full article
(This article belongs to the Special Issue Treatment of Facial Fracture)
Show Figures

Figure 1

21 pages, 11858 KiB  
Article
Testing a Method Based on an Improved UNet and Skeleton Thinning Algorithm to Obtain Branch Phenotypes of Tall and Valuable Trees Using Abies beshanzuensis as the Research Sample
by Jiahui Shen, Lihong Zhang, Laibang Yang, Hao Xu, Sheng Chen, Jingyong Ji, Siqi Huang, Hao Liang, Chen Dong and Xiongwei Lou
Plants 2023, 12(13), 2444; https://doi.org/10.3390/plants12132444 - 25 Jun 2023
Cited by 4 | Viewed by 1999
Abstract
Sudden changes in the morphological characteristics of trees are closely related to plant health, and automated phenotypic measurements can help improve the efficiency of plant health monitoring, and thus aid in the conservation of old and valuable tress. The irregular distribution of branches [...] Read more.
Sudden changes in the morphological characteristics of trees are closely related to plant health, and automated phenotypic measurements can help improve the efficiency of plant health monitoring, and thus aid in the conservation of old and valuable tress. The irregular distribution of branches and the influence of the natural environment make it very difficult to monitor the status of branches in the field. In order to solve the problem of branch phenotype monitoring of tall and valuable plants in the field environment, this paper proposes an improved UNet model to achieve accurate extraction of trunk and branches. This paper also proposes an algorithm that can measure the branch length and inclination angle by using the main trunk and branches separated in the previous stage, finding the skeleton line of a single branch via digital image morphological processing and the Zhang–Suen thinning algorithm, obtaining the number of pixel points as the branch length, and then using Euclidean distance to fit a straight line to calculate the inclination angle of each branch. These were carried out in order to monitor the change in branch length and inclination angle and to determine whether plant branch breakage or external stress events had occurred. We evaluated the method on video images of Abies beshanzuensis, and the experimental results showed that the present algorithm has more excellent performance at 94.30% MIoU as compared with other target segmentation algorithms. The coefficient of determination (R2) is higher than 0.89 for the calculation of the branch length and inclination angle. In summary, the algorithm proposed in this paper can effectively segment the branches of tall plants and measure their length and inclination angle in a field environment, thus providing an effective method to monitor the health of valuable plants. Full article
(This article belongs to the Special Issue Deep Learning in Plant Sciences)
Show Figures

Figure 1

13 pages, 305 KiB  
Article
Folding Every Point on a Polygon Boundary to a Point
by Nattawut Phetmak and Jittat Fakcharoenphol
Algorithms 2023, 16(6), 281; https://doi.org/10.3390/a16060281 - 31 May 2023
Viewed by 2066
Abstract
We consider a problem in computational origami. Given a piece of paper as a convex polygon P and a point f located within, we fold every point on a boundary of P to f and compute a region that is safe from folding, [...] Read more.
We consider a problem in computational origami. Given a piece of paper as a convex polygon P and a point f located within, we fold every point on a boundary of P to f and compute a region that is safe from folding, i.e., the region with no creases. This problem is an extended version of a problem by Akitaya, Ballinger, Demaine, Hull, and Schmidt that only folds corners of the polygon. To find the region, we prove structural properties of intersections of parabola-bounded regions and use them to devise a linear-time algorithm. We also prove a structural result regarding the complexity of the safe region as a variable of the location of point f, i.e., the number of arcs of the safe region can be determined using the straight skeleton of the polygon P. Full article
(This article belongs to the Special Issue Machine Learning in Computational Geometry)
Show Figures

Figure 1

17 pages, 6630 KiB  
Article
Experimental Investigation of the Characteristics and Transformation Mechanism of Jimsar Oil Shale and Derived Shale Oil
by Hao Lu, Luwei Pan, Yue Guo, Quan Xiong, Fangqin Dai and Shuai Wang
Processes 2023, 11(2), 411; https://doi.org/10.3390/pr11020411 - 30 Jan 2023
Cited by 3 | Viewed by 1800
Abstract
An experimental investigation of the characteristics and transformation mechanism of Jimsar oil shale and derived shale oil was conducted using a solid-state nuclear magnetic resonance spectrometer (13C NMR), Fourier transform infrared spectroscopy (FT-IR), liquid 1H NMR, and gas chromatography-mass spectrometry [...] Read more.
An experimental investigation of the characteristics and transformation mechanism of Jimsar oil shale and derived shale oil was conducted using a solid-state nuclear magnetic resonance spectrometer (13C NMR), Fourier transform infrared spectroscopy (FT-IR), liquid 1H NMR, and gas chromatography-mass spectrometry (GC-MS) techniques. The carbon skeleton structure of Jimsar oil shale is mainly composed of aliphatic carbons (70.5%), mostly containing straight-chain methylene (CH2), and aromatic carbon (29.31%). Derived shale oil is primarily made of aliphatic compounds that are dominated by n-alkanes and alkenes (comprising more than 70%). The nature of the conversion of oil shale to shale oil is the decomposition of aliphatic groups dominated by methylene structures in organic matter. Additionally, as the heating rate is increased, the secondary cracking reactions in shale oil could increase the contents of short-chain alkanes and alkenes, which could then enhance the secondary polymerization reactions that increase the generation of cycloalkanes and aromatic compounds. Shale oil demonstrates a maximum yield value of 6.32%, the largest carbon, hydrogen, and nitrogen contents, and a minimum oxygen content at the pyrolysis heating rate of 5 °C/min. Full article
Show Figures

Figure 1

19 pages, 13180 KiB  
Article
Transformer High-Voltage Primary Coil Quality Detection Method Based on Machine Vision
by Kewei Sun, Jiazhong Xu, Shiyi Zheng and Ningshuo Zhang
Appl. Sci. 2023, 13(3), 1480; https://doi.org/10.3390/app13031480 - 22 Jan 2023
Cited by 3 | Viewed by 2479
Abstract
Aiming at the problems of low efficiency and low accuracy in manual detection of winding angle and wire spacing during automatic winding of high-voltage primary coils of transmission and distribution transformers, a detection scheme using machine vision is proposed. Firstly, the coil image [...] Read more.
Aiming at the problems of low efficiency and low accuracy in manual detection of winding angle and wire spacing during automatic winding of high-voltage primary coils of transmission and distribution transformers, a detection scheme using machine vision is proposed. Firstly, the coil image is acquired by the industrial camera, the detection region is segmented, and the ROI (region of interest) image is pre-processed. For winding angle detection, we propose a slicing method for image graying to reduce the interference caused by uneven light irradiation. The gray image is converted to a binary image, and wire skeleton extraction is performed; the skeleton is identified using the Hough transform for feature straight lines, and the winding angle is then calculated. For wire spacing detection, we propose an intersection of the perpendicular lines method, which extracts edge coordinates using contour images and performs endpoint pixel expansion and shape classification. Use the intersection of the vertical lines to determine the centroid coordinates of the wire outline, calculate the pixel distance of the adjacent centroid, and obtain the wire spacing by combining pixel calibration. Comparison experiments have shown that the solution has a high detection accuracy (0.01 mm), and the error of the integrated detection results is not higher than 10%, which enables the real-time detection of coil winding status and corrects the winding process according to the visual real-time detection result to improve the finished product quality of coils. Full article
(This article belongs to the Special Issue Robot Vision: Theory, Methods and Applications)
Show Figures

Figure 1

11 pages, 1221 KiB  
Article
When a Worm Loves a Coral: A Symbiotic Relationship from the Jurassic/Cretaceous Boundary
by Olev Vinn, Bert W. Hoeksema, Bogusław Kołodziej and Zuzana Kozlová
Diversity 2023, 15(2), 147; https://doi.org/10.3390/d15020147 - 21 Jan 2023
Cited by 4 | Viewed by 3314
Abstract
Reefal limestones of the Štramberk Carbonate Platform are preserved as olistoliths and pebbles in deep-water flysch of the Outer Carpathians (Czech Republic, Poland). They contain the richest coral assemblages of the Jurassic/Cretaceous transition (Tithonian–Berriasian). Symbiotic associations between corals and tube-dwelling macroorganisms were recognized [...] Read more.
Reefal limestones of the Štramberk Carbonate Platform are preserved as olistoliths and pebbles in deep-water flysch of the Outer Carpathians (Czech Republic, Poland). They contain the richest coral assemblages of the Jurassic/Cretaceous transition (Tithonian–Berriasian). Symbiotic associations between corals and tube-dwelling macroorganisms were recognized only in the branching scleractinian corals Calamophylliopsis flabellum and Calamophylliopsis sp. One to seven calcareous tubes were recognized either in coral calyces, embedded in the wall, or attached to it. Two types of tubes were recognized: Type 1: tubes with a diameter of 0.3–0.6 mm and a very thin wall (ca. 0.05 mm), mostly occurring inside corallites, and nearly exclusively in the Štramberk-type limestone of Poland; Type 2: tubes with an outer diameter of 0.8–2.0 mm and a thick wall (ca. 0.1 mm, some even up to 0.2 mm), mostly found in the Štramberk Limestone of the Czech Republic. Growth lamellae were observed in some thick walls. Most tubes are almost straight, some are curved. The tubes were probably produced by serpulids or by embedment of organic-walled sabellid polychaete worms. It is likely the oldest record of a sabellid–coral association. Modification of the coral skeleton in contact with tubes indicates that the worms were associated with live corals. For many modern and fossil worm–coral associations, this symbiotic association is interpreted as mutualistic or commensal. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

17 pages, 7796 KiB  
Article
Experimental Study on Tenon and Mortise Joints of Wood-Structure Houses Reinforced by Innovative Metal Dampers
by Shibin Yu, Wen Pan, Hexian Su, Liaoyuan Ye and Daohang Wang
Forests 2022, 13(8), 1177; https://doi.org/10.3390/f13081177 - 25 Jul 2022
Cited by 7 | Viewed by 3146
Abstract
To improve the seismic performance of Chinese traditional wood-structure houses, this paper proposes to strengthen their mortise and tenon joints by applying an innovative metal damper. According to the dimensions of the “Yikeyin” wood-structure houses in the Tonghai area of Yunnan Province, two [...] Read more.
To improve the seismic performance of Chinese traditional wood-structure houses, this paper proposes to strengthen their mortise and tenon joints by applying an innovative metal damper. According to the dimensions of the “Yikeyin” wood-structure houses in the Tonghai area of Yunnan Province, two groups of six samples of three types of mortise and tenon joints were manufactured, in which one group was mounted with dampers made of Q235 steels. Subsequently, a low-cycle repeated loading test was conducted to examine the overall behavior of these joints. Various characteristics of seismic performance indexes, such as the moment–rotation hysteresis curve, skeleton curve, stiffness degradation, energy dissipation capacity, residual amount of tenon and the removal before and after reinforcements of straight, penetrated and dovetail tenon joints were analyzed. The test results show that these tenons exhibit good deformation capacity, their hysteresis curves became fuller and their “pinch” effects were significantly reduced, all after their joints became strengthened, indicating that their joint slips were reduced during the loading processes and their residual amounts of tenon removals were under effective control. Compared with the blank group, the joint stiffness was substantially improved, and the increase in the reverse stiffness turned greater than that of the positive stiffness at each stage of loading, while the degradation curve of the whole joint stiffness became steeper. After mounting the dampers, the bearing capacity and energy dissipation of the joints were significantly improved, the equivalent viscous damping coefficients of the straight and penetrated tenon joints were increased, but that of the dovetail joint was slightly reduced. These study results can provide a reference for the reinforcement and protection of traditional wood-structure houses. Full article
(This article belongs to the Special Issue Advanced Technologies in Physical and Mechanical Wood Modification)
Show Figures

Figure 1

12 pages, 1455 KiB  
Article
Incremental Construction of Motorcycle Graphs
by Franz Aurenhammer, Christoph Ladurner and Michael Steinkogler
Algorithms 2022, 15(7), 225; https://doi.org/10.3390/a15070225 - 27 Jun 2022
Cited by 1 | Viewed by 1975
Abstract
We show that the so-called motorcycle graph of a planar polygon can be constructed by a randomized incremental algorithm that is simple and experimentally fast. Various test data are given, and a clustering method for speeding up the construction is proposed. Full article
Show Figures

Figure 1

11 pages, 4441 KiB  
Article
Quality Evaluation Algorithm for Chest Compressions Based on OpenPose Model
by Siqi Zhang, Jie Jin, Chaofang Wang, Wenlong Dong and Bin Fan
Appl. Sci. 2022, 12(10), 4847; https://doi.org/10.3390/app12104847 - 11 May 2022
Cited by 7 | Viewed by 2728
Abstract
Aiming at the problems of the low evaluation efficiency of the existing traditional cardiopulmonary resuscitation (CPR) training mode and the considerable development of machine vision technology, a quality evaluation algorithm for chest compressions (CCs) based on the OpenPose human pose estimation (HPE) model [...] Read more.
Aiming at the problems of the low evaluation efficiency of the existing traditional cardiopulmonary resuscitation (CPR) training mode and the considerable development of machine vision technology, a quality evaluation algorithm for chest compressions (CCs) based on the OpenPose human pose estimation (HPE) model is proposed. Firstly, five evaluation criteria are proposed based on major international CPR guidelines along with our experimental study on elbow straightness. Then, the OpenPose network is applied to obtain the coordinates of the key points of the human skeleton. The algorithm subsequently calculates the geometric angles and displacement of the selected joint key points using the detected coordinates. Finally, it determines whether the compression posture is standard, and it calculates the depth, frequency, position and chest rebound, which are the critical evaluation metrics of CCs. Experimental results show that the average accuracy of network behavior detection reaches 94.85%, and detection speed reaches 25 fps. Full article
(This article belongs to the Special Issue Advanced Image Analysis and Processing for Biomedical Applications)
Show Figures

Figure 1

17 pages, 2723 KiB  
Article
WildGait: Learning Gait Representations from Raw Surveillance Streams
by Adrian Cosma and Ion Emilian Radoi
Sensors 2021, 21(24), 8387; https://doi.org/10.3390/s21248387 - 15 Dec 2021
Cited by 10 | Viewed by 2916
Abstract
The use of gait for person identification has important advantages such as being non-invasive, unobtrusive, not requiring cooperation and being less likely to be obscured compared to other biometrics. Existing methods for gait recognition require cooperative gait scenarios, in which a single person [...] Read more.
The use of gait for person identification has important advantages such as being non-invasive, unobtrusive, not requiring cooperation and being less likely to be obscured compared to other biometrics. Existing methods for gait recognition require cooperative gait scenarios, in which a single person is walking multiple times in a straight line in front of a camera. We address the challenges of real-world scenarios in which camera feeds capture multiple people, who in most cases pass in front of the camera only once. We address privacy concerns by using only motion information of walking individuals, with no identifiable appearance-based information. As such, we propose a self-supervised learning framework, WildGait, which consists of pre-training a Spatio-Temporal Graph Convolutional Network on a large number of automatically annotated skeleton sequences obtained from raw, real-world surveillance streams to learn useful gait signatures. We collected and compiled the largest pretraining dataset to date of anonymized walking skeletons called Uncooperative Wild Gait, containing over 38k tracklets of anonymized walking 2D skeletons. We make the dataset available to the research community. Our results surpass the current state-of-the-art pose-based gait recognition solutions. Our proposed method is reliable in training gait recognition methods in unconstrained environments, especially in settings with scarce amounts of annotated data. Full article
(This article belongs to the Special Issue Pattern Recognition Using Neural Networks)
Show Figures

Figure 1

Back to TopTop