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Abstract: Aiming at the problems of the low evaluation efficiency of the existing traditional cardiopul-
monary resuscitation (CPR) training mode and the considerable development of machine vision
technology, a quality evaluation algorithm for chest compressions (CCs) based on the OpenPose hu-
man pose estimation (HPE) model is proposed. Firstly, five evaluation criteria are proposed based on
major international CPR guidelines along with our experimental study on elbow straightness. Then,
the OpenPose network is applied to obtain the coordinates of the key points of the human skeleton.
The algorithm subsequently calculates the geometric angles and displacement of the selected joint
key points using the detected coordinates. Finally, it determines whether the compression posture is
standard, and it calculates the depth, frequency, position and chest rebound, which are the critical
evaluation metrics of CCs. Experimental results show that the average accuracy of network behavior
detection reaches 94.85%, and detection speed reaches 25 fps.

Keywords: human pose estimation; cardiopulmonary resuscitation; OpenPose; chest compressions;
joint key points

1. Introduction

In recent years, cardiac arrest (CA) has had an extremely high morbidity and mortality
rate worldwide [1]. CPR is the most effective means of rescuing patients with Outside
of Hospital Cardiac Arrest (OHCA) [2]. Therefore, it is very urgent to increase the pop-
ularity of CPR among the public. A complete CPR process includes five parts: on-site
environmental safety assessment, patient injury assessment and calling for help, CCs,
artificial respiration and defibrillation. For CPR procedures, CCs have the most extended
duration [3]. Interruption of compressions, unstable compression speed, and intensity can
all affect the effectiveness of CCs, resulting in poor resuscitation quality and low patient
survival [4]. Effective and continuous CCs can improve coronary artery perfusion and
myocardial ischemia and hypoxia [5,6]. Therefore, for the training of CPR, standard action
training and assessment should be the main objective.

At present, the most effective method in the traditional CPR training mode is to have
trainees perform CCs on CPR manikins [7], as shown in Figure 1. The manikin, which is
equipped with various sensors, can provide feedback on compression depth, frequency
and whether the chest fully rebounds during the operation. However, it cannot monitor
the operating position and whether the elbow is straight, which is essential to ensure CC
quality. Therefore, monitoring elbow straightness and operating position is generally the
instructor’s work. However, one instructor can only train six people simultaneously at
most, which is inefficient and unable to guarantee the quality of the supervision. Therefore,
the automatic judgment of CCs is an essential step in realizing innovative CPR training
and evaluation.
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Figure 1. Traditional training mode with a CPR manikin.

As the name suggests, the aim of HPE [8] is to locate key points (such as the head,
right hand, and left shoulder) of the human body from an image or video and to track the
pose. With the development of deep learning, HPE is applied in a wide range of fields,
such as virtual reality, sports motion analysis, human–computer interactions and medical
health care.

In this paper we introduce an intelligent approach for evaluating CC quality using
video imagery. OpenPose [9] is applied to the evaluation process in CPR. The recognition
algorithm is realized based on the OpenPose network by extracting the coordinates of key
points from video frames recorded by monocular cameras, preprocessing the data and
using the joint point coordinates for corresponding calculations. Since the key indicators
(depth, frequency, position, chest rebound and elbow straightness) can be calculated from
the coordinate data, the operator does not need to install any sensors in the manikin body.
Based on the rules of CPR guidelines from the American Heart Association (AHA) [10], the
European Resuscitation Council (ERC) [11], the European Society of Cardiology (ESC) [12]
and the Extracorporeal Life Support Organization (ELSO) [13], and based on our research on
compression poses, the algorithm finally makes an assessment. The first section introduces
the system architecture and the OpenPose model. Then, we conduct research to define
reasonable CC criteria. In the second section, we give a detailed introduction to algorithm
implementation based on the principles mentioned above. Finally, we design an experiment
to prove the effectiveness of the method.

2. System Architecture
2.1. Design

In order to evaluate the quality of CCs, this paper estimates the human pose in a
two-dimensional (2D) image by applying OpenPose. By analyzing the motion features of
crucial parts of the human body, this paper assesses the depth, frequency, position, chest
rebound and elbow straightness of compression postures. As shown in Figure 2, the system
architecture consists of four stages: image acquisition, pose estimation, essential motion
feature assessment and quality evaluation. The details of each step are introduced below.

A camera is installed to record the front view of the CC motions of trainees. The
camera’s field of view should include the operator’s whole shoulders and elbows as well as
the upper body of the lying CPR manikin. Sample CCs video is provided in Supplementary
Material (Video S1). FFmpeg [14] is a computer program that can record and convert video
and audio. We used the FFmpeg package in python to vary video format, resolution and
frame rate [15].

After the format conversion is completed, the pose estimation can be performed. The
OpenPose we selected is a 2D human estimation algorithm that detects multiple people’s
poses in real time and provides valuable information using multi-GPU-based deep learning
methods. OpenPose uses the bottom-up method, first returning all the joint points in a
picture and returning the part affinity field (PAF) simultaneously. According to the PAF,
the joint points are assigned to the corresponding people. Example processed frame is
provided in Supplementary Material (Figure S1). Therefore, its computational complexity
is not related with the number of people in the image, and its computational efficiency is
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higher than the top-down method. Based on the VGG-19 network [16], OpenPose extracts
a feature map. It generates a part confidence map to detect each joint of the human body
and to determine the relationship between the extracted joints [17].
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Figure 2. System architecture.

We used OpenPose to recognize the coordinate information of 18 key points and the
confidence of the key points of the trainee from the processed video. However, during the
experiment, the key points of the CPR manikin are also extracted together. To judge the
standardization of the trainee’s motions, we must first distinguish the key points of the
trainee from them. The value of confidence provided by OpenPose can differentiate the
key-point information of the trainee in the video from the mixed coordinate information
and can generate the key-point coordinate file simultaneously. As shown in Figure 3b, the
multi joints and links of the trainee’s body are recognized and generated.
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Figure 3. Front views of original and pose-estimated images: (a) front view of an original image;
(b) front view of a pose estimated image by OpenPose.

2.2. Research

The AHA Guidelines point out that the compression depth of the chest should be
between 5 and 6 cm [10]. Usually, the efficiency of standard CPR is only about 30% of the
efficiency of autonomous cardiac pumping. When the compression depth is less than 5 cm,
the efficiency of CPR is worse, which may cause the death of the patient.

ERC has pointed out that, in the process of CCs, it is essential to maintain chest
rebound [11]. Chest rebound can allow blood to flow back sufficiently to be fully “ejected”
during the subsequent compression [18].

In the ERC guidelines from 2021, the frequency is at least 100 times/min [11]. Further-
more, it must be 100–120 times/min in the AHA guidelines [10]. If the frequency is less
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than 100 times/min, the return of spontaneous circulation (ROSC) is significantly reduced.
When the compression frequency is more than 120 times/min, due to the limitation of chest
rebounds, myocardial perfusion and coronary blood flow both decrease, which reduces the
success rate of the ROSC [19].

The correct compression position is the midpoint of the connection between the two
nipples, which can withstand greater force [12]. If the position is offset during CPR, it is
easy to fracture the patient’s ribs [20].

Although there is no explicit requirement in major international CPR guidelines that
states that the operator’s elbows must be straight during compressions, during the actual
operation, it was found that elbow straightness significantly influences the compression
depth and frequency of the chest, which in turn affects the quality. At present, the rela-
tionship between them has not been accurately studied. Therefore, this section examines
the relationship between elbow straightness and compression depth, frequency and chest
rebound in a certain period, and then it explores the effects of elbow straightness on
CC quality.

To test the influence on depth, frequency, rebound and position of different elbow
straightness, and to determine the appropriate elbow angle used for our algorithm, we
recruited 34 volunteers to perform compression on a CPR manikin with real-time feedback
under random conditions (referring to random within three groups of angles of 151–160◦,
161–170◦, and 171–180◦).

As shown in Table 1, a t-test was used for the measurement data, and a chi-squared
test was used for the enumeration data. When p < 0.05, the difference was statistically
significant. Continuous variables are expressed as mean ± standard deviation (i.e., x ± s).

Table 1. The quality of CC under different elbow angles.

Observation Indicators 151–160◦ 161–170◦ 171–180◦ p

Average depth (mm) 50.62 ± 5.16 52.48 ± 5.39 53.79 ± 5.54 >0.05

Average frequency
(times/min) 99 106 117 <0.05

Correct rate of depth (%) 75.82 ± 11.68 79.21 ± 11.10 84.35 ± 8.97 <0.05

Full rebound rate (%) 76.32 ± 15.32 78.64 ± 18.73 83.96 ± 13.47 <0.05

Correct rate of frequency (%) 72.32 ± 20.32 80.96 ± 15.67 86.89 ± 16.73 <0.05

Correct rate of compression
position (%) 100 ± 0.00 100 ± 0.00 100 ± 0.00 >0.05

It can be seen from Figure 4 that the correct proportion of compression depth in the
range of 171–180◦ is the highest, and the difference is statistically significant (p < 0.05)
compared with the other two groups. Moreover, the trend of correct rates in the frequency
group and in the chest rebound group is consistent with the depth group. Therefore, it
can be concluded that, when the elbow is bent during operation, the error rates of depth,
frequency, and rebounds increase, affecting CC quality.

In this study, experiments show that elbows should be kept as straight as possible to
ensure quality and to improve the success rate of rescue, and elbow angles in the 171–180◦

range are acceptable. In the following study, operator elbow straightness is one of the key
indicators to measure quality.

Based on the above research on the five indicators, we specify five standardized
operating parameters and eligibility requirements in Table 2. It is worth noting that we set
a fault tolerance rate of 30%. Specifically, a qualified CC video requires that the correct rate
of each inspection index must reach 70%, and each inspection index is qualified.
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Table 2. Criteria for chest compressions.

Indicators Desired Value Range Sub-Requirement Overall Requirement

Operating position
The midpoint of the

connection between the
two nipples

The correct rate is more
than 70%

Every indicator should
be qualifiedElbow straightness 171–180◦

The correct rate of the left and
right elbows should both

reach more than 70%

Frequency 100–120 times/min
The correct rate is more

than 70%Depth 5–6 cm

Chest rebound Must be fully rebound

2.3. Key Motion Feature Assessment
2.3.1. Depth of Compression

OpenPose can identify the coordinates of the key points of the human hand, so we
use the max displacement of the coordinates to determine compression depth. During
CCs, both hands are crossed together and pressed downwards vertically, and they have the
same moving distances. Thus, we only consider the compression depth of a single hand.
The initial position of the right wrist is selected as the starting position of the compression.
Since the x-coordinate of the corresponding key point has no reference meaning of depth,
only its y-coordinate needs to be considered when calculating.

As shown in Figure 5, the depth of compression means the distance from the starting
compression position to the deepest position in a cycle. Therefore, we took the order
number of the frame as the abscissa and the y-coordinate of the right wrist key point in the
corresponding frame as the ordinate, and we drew the curve by the plt.plot function in
python. Then, we found the compression depth in a cycle by the argrelextrema function
of scipy.signal., which calculates the relative extrema of input array data of y-coordinates
and returns a tuple with maximum value. As shown in Figure 6, in actual experiments,
it was found that local minimum points appear in one cycle due to the fast frame rate
and the accuracy of OpenPose. As a result, multi values are selected incorrectly in one
cycle. To avoid this problem and to prevent missing extreme points, after testing, the
y-value is selected to output every two frames to prevent the problem of local minimum
points. Example curve is provided in Supplementary Material (Figure S2). Since the
point coordinates in the image are in pixels, it is necessary to transform the depth to the
actual depth through a corresponding scale transformation to discriminate whether the
compression depth is 5–6 cm.
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Figure 6. Example of solution to the local minimum point problem: (a) The local minimum point
problem for the first, second and fourth time; (b) The y values are selected every two frames to find
unique compression depth. And the orange dots mean the selected maximum after processing.

2.3.2. Chest Rebound

We use the same methods to find the position of the minimum value in the scattered
point image and to avoid the appearance of local minimum points. To maintain adequate
rebound of the chest after each compression, we must ensure that the starting position of
each compression is close to the initial position. Based on the weak perspective model, we
can determine whether the chest fully rebounds by judging whether the Euclidean distance
between the starting position and the initial position of the wrist joint point in each CC is
within the expected range, as shown in Figure 7.
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2.3.3. Frequency of Compression

We obtained an initial video with a 30 fps frame rate and judged the compression
frequency by the order numbers of frames in which the minimum point appears, i.e., the
end of one single compression. For example, assuming that the abscissa is e and that
there is a minimum y value, the frequency f = 1800/e. To eliminate the influence of local
minimum points during the calculation, the y value is taken every two frames. Thus, in



Appl. Sci. 2022, 12, 4847 7 of 11

practice, the frequency f = 900/e. As shown in Figure 8, if the minimum values appear
at the three horizontal axis points a, b and c from the starting position, it means that the
three compressions end at the a, b and c frames. Then, we can calculate the corresponding
compression frequencies f 1 = 900/a, f 2 = 900/(b − a) and f 3 = 900/(c − b).
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Figure 8. Illustration of three points a, b and c, where the minimum values appear from the
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If the calculated frequency is lower than 100 times/min, the algorithm regards the
operation as too slow; if the frequency is higher than 120 times/min, the operation is
deemed to be too fast. If it is between 100 and 120 times/min, the operation is judged
as correct.

2.3.4. Position of Compression

To discriminate whether the CC position is correct, based on the weak perspective
model, a circular area on the chest of the CPR manikin is marked, and to determine whether
the position is correct, the coordinate of the starting position is determined to be outside or
within the circular area. By analyzing the coordinates of the positions of 213 correct CC
samples, we found that, except for individual errors, they are essentially distributed in the
circular area, as described in (1).

x2 + y2 − 374x− 54y + 35, 662 = 0 (1)

2.3.5. Elbow Angles

In order to judge whether both elbows are straight when performing CCs, we introduce
the elbow angle index, which determines whether a pose is correct. Due to individual
differences, we can consider the posture with the corresponding angle to be between
170 and 180◦ as qualified, as shown in Figure 9a. As shown in Figure 10, by knowing the
coordinates of the three elbow key points A, B and C, the angle of elbows can be measured
by the cosine formula.
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Knowing A(x1,y1), B(x2,y2) and C(x3,y3), we first calculate
→

AB and |AB|with a formula,

as shown in Equations (2) and (3). In the same way,
→

BC and |BC| can be calculated, as
shown in Equations (4) and (5).

→
AB = (x2 − x1, y2 − y1), (2)

|AB| = (((x2 − x1)
2 + (y2 − y1)

2
))

1
2 , (3)

→
BC = (x3 − x2, y3 − y2), (4)

|BC| = (((x3 − x2)
2 + (y3 − y2)

2
))

1
2 . (5)

Finally, the angle between the two vectors formed by the three elbow key points can
be measured by applying the law of cosines, as described in (6).

∠B = arccos(
→

AB×
→

BC÷ (|AB||AC|)) (6)

3. Results and Analysis
3.1. Experimental Environment and Methods

The experimental environment consists of an Honor V30 mobile phone, a CPR manikin,
and a PC with an i7 Intel core processor and 16 GB RAMs with GTX-1080-Ti GPUs to
operate OpenPose and other computation processes. The human–computer interaction
interfaces are the Browser/Server architecture web page. The front-end uses the Vue
framework to realize function design and page development. The back-end uses the
NET framework to build a 5-layer structure of an entity layer, a data processing layer, a
business logic processing layer, an API layer and a view layer. Our system functions include
user registration and login, information management and maintenance, video capturing,
uploading and management, and motion evaluation.

This article uses a monocular camera to experiment. The test set includes correct
actions and seven kinds of incorrect actions. The incorrect CC actions consist of elbow-
flexing, too deep, too shallow, too fast, too slow, insufficient chest rebound and wrong
operating position. If a CC meeting the five requirements is detected, it is judged to be
correct. Otherwise, our browser page prompts the corresponding specific error reason. A
total of five experimenters (three males and two females) were invited to conduct CCs on
CPR manikins with sensors that can feedback depth, frequency, rebound and position. In
order to make the experiment more convincing, the height and weight of the experimenters
were chosen to have a significant difference, with a weight range of 50–80 kg and a height
range of 1.6–1.8 m. Each person performed each of the above 8 kinds of actions a total of
30 times. A total of 1200 (5 × 8 × 30) test actions were performed, including 1050 incorrect
and 150 correct actions. According to the feedback data from CPR manikin’s sensors,
1200 samples were manually labeled as correct or incorrect. The judgment result from our
algorithm was compared with the labels to detect our method’s accuracy.
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3.2. Results and Analysis

The above experimental results in Table 3 show that, when the camera is at a fixed
position, the detection accuracy of the evaluation algorithm based on the OpenPose model
reaches 94.85%, and the operating speed is up to 25 fps. When the algorithm is running,
the recognition effect of each key point of the human body is good, and it can correctly
distinguish the key points of the human body and the manikin body. In order to verify
the effectiveness of the algorithm, this paper uses four performance indicators of accuracy,
precision, recall and F-measure to evaluate the performance of the proposed algorithm.
The calculation methods of the four indicators are shown by Formulas (7)–(10).

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F−measure = 2× Recall × Precision
Recall + Precision

. (10)

Table 3. The experimental results.

Action Type
The Number of Successes per Person in 30 Trials The Success

Rate/%1 2 3 4 5

Correct 29 27 28 29 28 94.00%

Elbow-flexing 28 30 28 28 28 94.67%

Too deep 27 28 27 29 29 93.33%

Too shallow 30 28 29 29 30 97.33%

Too fast 28 27 28 28 27 92.00%

Too slow 29 30 30 29 30 98.67%

Insufficient
chest rebound 30 29 28 28 29 96.00%

Wrong
operating
position

26 28 27 28 27 90.67%

As shown in Table 4, the accuracy of the proposed method was 94.58%, and TP and
TN were measured to be 0.118 and 0.828, respectively. In general, precision measures
the fraction of positive examples from the group that the proposed method predicts to be
positive, and recall measures the fraction of positive instances from the positive group of the
actual class. F-measure is a harmonic mean of precision and recall. The results of precision,
recall and F-measure were calculated to be 71.57%, 94.00% and 81.27%, respectively. The
difference in precision and recall occurred because the FP was slightly higher than the FN
by 0.039. This means that incorrect actions were counted as correct more often than correct
actions as incorrect. Further studies are needed to improve the performance of the method.
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Table 4. The performance of the proposed method.

Parameter Value Parameter Value

TP 0.118 Accuracy 94.58%

FP 0.047 Precision 71.57%

FN 0.008 Recall 94.00%

TN 0.828 F-measure 81.27%

4. Conclusions

An automatic CC evaluation approach was developed by using video imagery for
people who want to learn how to perform CCs, such as students, drivers and police. We
applied OpenPose to extract multiple joints and links of the human body in 2D images and
then analyzed critical body parts that influence quality. In order to consider the individual
physical differences of each person, a total of 1200 samples were generated from 40 videos
recorded by monocular cameras. Five criteria were defined based on our research and on
rules from major CPR guidelines. The angles of elbows, depth, frequency, position and
chest rebound were parameterized to discriminate between correct and incorrect actions.

Our approach has certain advantages by comparing several indicators, such as com-
prehensiveness, applicability, cost, performance and flexibility.

1. In addition to detecting the general indicators of compression, we propose automated
discrimination of operator posture for the first time.

2. Our algorithm is not affected by the surrounding environment. It uses a typical
monocular RGB camera as a sensor to collect data, which has better applicability than
a depth camera and has a lower cost.

3. The performance of our algorithm is 94.58%, 71.57%, 94.00%, and 81.27% in accuracy,
precision, recall and F-measure, respectively.

4. The application of the HPE method in CPR assessment can not only reduce the
problem of incorrect scores caused by an instructor’s lack of energy, but it can also
allow trainees to understand their own mistakes in private practice to better master
CPR techniques.

For future studies, improvements can be made in the following two aspects. Firstly, ex-
perimentation can be conducted to explore better methods to eliminate the local minimum
problem, such as using the median filter. Furthermore, 3D analysis of the human body as
well as deep learning approaches are to be further researched to improve its reliability in
public CPR popularization.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/app12104847/s1, Figure S1: A frame of CCs video processed by OpenPose
model; Figure S2: An output curve drawn by the plt.plot function; Video S1: A test video of CCs.
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