Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = stoichiometric two-component crystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 7999 KB  
Article
The Sensitivity of Structure to Ionic Radius and Reaction Stoichiometry: A Crystallographic Study of Metal Coordination and Hydrogen Bonding in Barbiturate Complexes of All Five Alkali Metals Li–Cs
by William Clegg and Gary S. Nichol
Molecules 2024, 29(7), 1495; https://doi.org/10.3390/molecules29071495 - 27 Mar 2024
Cited by 1 | Viewed by 1489
Abstract
A systematic study has been conducted on barbiturate complexes of all five alkali metals, Li–Cs, prepared from metal carbonates or hydroxides in an aqueous solution without other potential ligands present, varying the stoichiometric ratio of metal ion to barbituric acid (BAH). Eight polymeric [...] Read more.
A systematic study has been conducted on barbiturate complexes of all five alkali metals, Li–Cs, prepared from metal carbonates or hydroxides in an aqueous solution without other potential ligands present, varying the stoichiometric ratio of metal ion to barbituric acid (BAH). Eight polymeric coordination compounds (two each for Na, K, and Rb and one each for Li and Cs) have been characterised by single-crystal X-ray diffraction. All contain some combination of barbiturate anion BA (necessarily in a 1:1 ratio with the metal cation M+), barbituric acid, and water. All organic species and water molecules are coordinated to the metal centres via oxygen atoms as either terminal or bridging ligands. Coordination numbers range from 4 (for the Li complex) to 8 (for the Cs complex). Extensive hydrogen bonding plays a significant role in all the crystal structures, almost all of which include pairs of N–H···O hydrogen bonds linking BA and/or BAH components into ribbons extending in one dimension. Factors influencing the structure adopted by each compound include cation size and reaction stoichiometry as well as hydrogen bonding. Full article
Show Figures

Figure 1

16 pages, 16317 KB  
Article
Microstructural Transformations in Solid-State Annealed Al/Ag/Al Diffusion Couples Examined via High-Voltage Electron Microscopy (HVEM)
by Minho Oh and Masanori Kajihara
Metals 2023, 13(10), 1780; https://doi.org/10.3390/met13101780 - 20 Oct 2023
Cited by 5 | Viewed by 1777
Abstract
This study focuses on the practical relevance of the Al-Ag bonding interface in electronic device fabrication, particularly in wire bonding, which is crucial for enhancing component reliability and performance. Experiments involved Al/Ag/Al diffusion couples, annealed at 703 K, revealing two stable intermediate phases, [...] Read more.
This study focuses on the practical relevance of the Al-Ag bonding interface in electronic device fabrication, particularly in wire bonding, which is crucial for enhancing component reliability and performance. Experiments involved Al/Ag/Al diffusion couples, annealed at 703 K, revealing two stable intermediate phases, μ and δ. Characterizing the intermediate phases’ compositions and concentration profiles exposed a vital transition at the δ-Al interface. We used high-voltage electron microscopy (HVEM) to examine crystal structure evolution, identifying a (hexagonal close-packed) hcp structure in the intermediate phase between δ and Al, matching the δ phase. Notably, a substantial microstructural transformation occurred within the Ag-Al diffusion couple, as nano-sized precipitates transitioned from spherical to plate-like, along specific {111} planes, reflecting the evolution from off-stoichiometric, disordered phases to ordered ones. Mapping the concentrations of intermediate phases on the Al-Ag phase diagram revealed shifted and narrower solubility ranges compared to the calculations. This study provides insight into the crystal structure and microstructure changes during diffusion in Al/Ag/Al diffusion couples, holding implications for electronic device fabrication. Understanding intermediate phase behavior and evolution is vital in this context, potentially influencing materials development and process optimization in the electronic components industry, and thus, enhancing device performance and reliability. Full article
Show Figures

Figure 1

17 pages, 5222 KB  
Article
Incorporation/Enrichment of 3D Bioprinted Constructs by Biomimetic Nanoparticles: Tuning Printability and Cell Behavior in Bone Models
by Tiziana Fischetti, Giorgia Borciani, Sofia Avnet, Katia Rubini, Nicola Baldini, Gabriela Graziani and Elisa Boanini
Nanomaterials 2023, 13(14), 2040; https://doi.org/10.3390/nano13142040 - 10 Jul 2023
Cited by 9 | Viewed by 1843
Abstract
Reproducing in vitro a model of the bone microenvironment is a current need. Preclinical in vitro screening, drug discovery, as well as pathophysiology studies may benefit from in vitro three-dimensional (3D) bone models, which permit high-throughput screening, low costs, and high reproducibility, overcoming [...] Read more.
Reproducing in vitro a model of the bone microenvironment is a current need. Preclinical in vitro screening, drug discovery, as well as pathophysiology studies may benefit from in vitro three-dimensional (3D) bone models, which permit high-throughput screening, low costs, and high reproducibility, overcoming the limitations of the conventional two-dimensional cell cultures. In order to obtain these models, 3D bioprinting offers new perspectives by allowing a combination of advanced techniques and inks. In this context, we propose the use of hydroxyapatite nanoparticles, assimilated to the mineral component of bone, as a route to tune the printability and the characteristics of the scaffold and to guide cell behavior. To this aim, both stoichiometric and Sr-substituted hydroxyapatite nanocrystals are used, so as to obtain different particle shapes and solubility. Our findings show that the nanoparticles have the desired shape and composition and that they can be embedded in the inks without loss of cell viability. Both Sr-containing and stoichiometric hydroxyapatite crystals permit enhancing the printing fidelity of the scaffolds in a particle-dependent fashion and control the swelling behavior and ion release of the scaffolds. Once Saos-2 cells are encapsulated in the scaffolds, high cell viability is detected until late time points, with a good cellular distribution throughout the material. We also show that even minor modifications in the hydroxyapatite particle characteristics result in a significantly different behavior of the scaffolds. This indicates that the use of calcium phosphate nanocrystals and structural ion-substitution is a promising approach to tune the behavior of 3D bioprinted constructs. Full article
Show Figures

Figure 1

11 pages, 512 KB  
Article
Variational Theory of Crystal Growth in Multicomponent Alloys
by Maxim V. Dudorov, Alexander D. Drozin and Vasiliy E. Roshchin
Crystals 2022, 12(11), 1522; https://doi.org/10.3390/cryst12111522 - 26 Oct 2022
Cited by 4 | Viewed by 1803
Abstract
The provisions for a new variational theory of crystal growth in multicomponent metal melts were formulated. The developed theory is the generalization of the previously conducted studies of crystal growth under conditions of deviation from local equilibrium at the phase boundary. The description [...] Read more.
The provisions for a new variational theory of crystal growth in multicomponent metal melts were formulated. The developed theory is the generalization of the previously conducted studies of crystal growth under conditions of deviation from local equilibrium at the phase boundary. The description of the methods of non-equilibrium thermodynamics of interrelated physico-chemical processes occurring in the initial phase, on the interface of phases and inside the growing crystal, was compared with the variational description of the crystal growth as a macrobody. The developed approach made it possible to find the general expression for the crystal growth rate, considering the influence of thermal and diffusion processes, as well as taking into account the influence of nonstationary effects associated with deviation from the local equilibrium on the surface of the growing nucleus. The justification of the new method showed that when the condition of the local equilibrium on the surface of the growing crystal is satisfied, the resulting equations take the form of expressions that can be obtained by constructing the equation of a mass and internal energy balance for the system under consideration. As an example, the problem of crystal growth from a melt of eutectic composition was considered. The equation of the growth rate of the two-component nucleus of the stoichiometric composition was obtained, taking into account the influence of the local non-equilibrium effects on growth. The expressions obtained were compared with the known equations of the solute trapping theory. Full article
(This article belongs to the Special Issue Phase Transition in External Fields)
Show Figures

Figure 1

19 pages, 4563 KB  
Article
Formation of Noble Metal Phases (Pt, Pd, Rh, Ru, Ir, Au, Ag) in the Process of Fractional Crystallization of the CuFeS2 Melt
by Elena Fedorovna Sinyakova, Inga Grigorievna Vasilyeva, Aleksandr Sergeevich Oreshonkov, Sergey Vladimirovich Goryainov and Nikolay Semenovich Karmanov
Minerals 2022, 12(9), 1136; https://doi.org/10.3390/min12091136 - 7 Sep 2022
Cited by 12 | Viewed by 2909
Abstract
The quasi-equilibrium directional crystallization of the melt composition (at. %): Cu 24.998, Fe 25.001, S 49.983, with Ag 0.002, Pd 0.003, Ru 0.004, Rh 0.006, and Au, Pt, Ir (each as 0.001) was carried out. The crystallized cylindrical ingot consisted of two primary [...] Read more.
The quasi-equilibrium directional crystallization of the melt composition (at. %): Cu 24.998, Fe 25.001, S 49.983, with Ag 0.002, Pd 0.003, Ru 0.004, Rh 0.006, and Au, Pt, Ir (each as 0.001) was carried out. The crystallized cylindrical ingot consisted of two primary zones and three secondary zones with different chemical and phase compositions. The compositions of the primary zones corresponded to high-temperature intermediate solid solution (zone I) and liquid enriched in sulfur (zone II). The compositions of the secondary zones corresponded to low-temperature intermediate solid solution and chalcopyrite (zone Ia), the same intermediate solid solution with chalcopyrite and bornite (zone Ib), and again with bornite, chalcocite, and idaite (zone II). We plotted the distribution curves of Fe, Cu, and S along the ingot, calculated the distribution coefficients of the components during directional crystallization, and clearly showed that, from the initial stoichiometric composition CuFeS2, the intermediate solid solution enriched in Fe and depleted in S is crystallized. Based on the data of directional crystallization and thermal analysis, a cross section was constructed in the intermediate solid solution-sulfide melt region of the Cu-Fe-S system. With solubility in the solid Cu-Fe sulfides lying below detection limit of scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM/EDS), noble elements occurred as individual phases of a size more often <10 µm. They were identified as Ag, RuS2, PdS, Au* (an Au based alloy), (Rh, Ir, Ru)3S8, (Rh, Ir)3S8, Rh3S8, and (Cu, Fe)~2(Pt, Rh)1S~5 phases by electron microprobe. Based on ab initio calculations of crystal structure, electronic band structure, and lattice dynamics of idealized laurite RuS2 phase and the idealized Ir3S8, Rh3S8, and Ru3S8 phases, the interpretation of Raman spectrum of the cation-mixed (Ru, Rh, Ir)S2 sulfide was presented for the first time. Full article
(This article belongs to the Special Issue Precious Metals vs. Base Metals: Nature and Experiment)
Show Figures

Figure 1

14 pages, 1460 KB  
Review
Obtaining Cocrystals by Reaction Crystallization Method: Pharmaceutical Applications
by Isabela Fanelli Barreto Biscaia, Samantha Nascimento Gomes, Larissa Sakis Bernardi and Paulo Renato Oliveira
Pharmaceutics 2021, 13(6), 898; https://doi.org/10.3390/pharmaceutics13060898 - 17 Jun 2021
Cited by 29 | Viewed by 6730
Abstract
Cocrystals have gained attention in the pharmaceutical industry due to their ability to improve solubility, stability, in vitro dissolution rate, and bioavailability of poorly soluble drugs. Conceptually, cocrystals are multicomponent solids that contain two or more neutral molecules in stoichiometric amounts within the [...] Read more.
Cocrystals have gained attention in the pharmaceutical industry due to their ability to improve solubility, stability, in vitro dissolution rate, and bioavailability of poorly soluble drugs. Conceptually, cocrystals are multicomponent solids that contain two or more neutral molecules in stoichiometric amounts within the same crystal lattice. There are several techniques for obtaining cocrystals described in the literature; however, the focus of this article is the Reaction Crystallization Method (RCM). This method is based on the generation of a supersaturated solution with respect to the cocrystal, while this same solution is saturated or unsaturated with respect to the components of the cocrystal individually. The advantages of the RCM compared with other cocrystallization techniques include the ability to form cocrystals without crystallization of individual components, applicability to the development of in situ techniques for the screening of high quality cocrystals, possibility of large-scale production, and lower cost in both time and materials. An increasing number of scientific studies have demonstrated the use of RCM to synthesize cocrystals, mainly for drugs belonging to class II of the Biopharmaceutics Classification System. The promising results obtained by RCM have demonstrated the applicability of the method for obtaining pharmaceutical cocrystals that improve the biopharmaceutical characteristics of drugs. Full article
(This article belongs to the Special Issue Cocrystal Applications in Drug Delivery (Volume II))
Show Figures

Graphical abstract

25 pages, 1249 KB  
Article
Surface Roughness Changes Induced by Stoichiometric Deviation in Ambient Phase for Two-Component Semiconductor Crystals
by Noriko Akutsu, Yoshiki Sugioka and Naoya Murata
Crystals 2020, 10(3), 151; https://doi.org/10.3390/cryst10030151 - 27 Feb 2020
Cited by 4 | Viewed by 2915
Abstract
The effects of a deviation in the fraction of the components in the ambient phase of a stoichiometric AB compound, such as GaN or SiC crystals, on the surface roughness and step self-assembly and disassembly on a vicinal surface are studied using the [...] Read more.
The effects of a deviation in the fraction of the components in the ambient phase of a stoichiometric AB compound, such as GaN or SiC crystals, on the surface roughness and step self-assembly and disassembly on a vicinal surface are studied using the Monte Carlo method based on a staggered restricted solid-on-solid (st-RSOS) model at equilibrium. The (001) and (111) surfaces are typical examples of non-polar and polar surfaces, respectively. Although a stoichiometric deviation of the ambient phase does not affect the surface energy of a non-polar surface, it affects that of polar surfaces such as the ( 111 ) A and ( 111 ) B surfaces. We found that the vicinal surface of an AB compound is atomically smooth and globally rough. Globally, the vicinal surface is not affected by a stoichiometric deviation in the ambient phase. In contrast, in a small area, the structure of the vicinal surface is affected by a stoichiometric deviation in the ambient phase. The vicinal surface consists of local double and quadruple steps. The characteristic length L M F L , which separates the global length scale region and the local length scale region, has a maximum value of 156 a in the present study, where a is the lattice constant. When temperature decreases, L M F L can become large. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

3 pages, 163 KB  
Editorial
Intermetallic Alloys
by Takayuki Takasugi
Metals 2019, 9(9), 940; https://doi.org/10.3390/met9090940 - 28 Aug 2019
Viewed by 2022
Abstract
Intermetallic alloys are defined as solids which are comprised of two components combined with an off-stoichiometric range or dissolution of other components and have different crystal structures from those of the two components [...] Full article
(This article belongs to the Special Issue Intermetallic Alloys)
20 pages, 3878 KB  
Article
Phase Stability and Morphology of Gel Grown Crystals: The Case of CdCl2-bpp Polymeric System
by Leonardo Lo Presti, Massimo Moret and Silvia Rizzato
Crystals 2019, 9(7), 363; https://doi.org/10.3390/cryst9070363 - 16 Jul 2019
Viewed by 4024
Abstract
A phenomenological study is carried out on a complex two-component diffusion-reacting system in gel, that is, the Cd-1,3-bis(4-pyridyl)propane (Cd-bpp) coordination polymer. The latter can exist in three solid forms, which exploit a 1:1 correspondence among the Cd/bpp ratio, the crystal structure and [...] Read more.
A phenomenological study is carried out on a complex two-component diffusion-reacting system in gel, that is, the Cd-1,3-bis(4-pyridyl)propane (Cd-bpp) coordination polymer. The latter can exist in three solid forms, which exploit a 1:1 correspondence among the Cd/bpp ratio, the crystal structure and the crystal morphology (1/2: bipyramids; 2/3: needles; 1/3: plates). The aim was to clarify the role of key physicochemical variables (reactant concentrations, composition of the solvent and density of the transport medium) in determining the chemical nature and the morphology of the final crystallization products. The gel method was tested in a variety of different crystallization configurations, including single and double diffusion techniques. The density of the gel primarily affects the morphology of the synthesized crystals, with denser media favouring the needle-like 2/3 Cd-bpp species and diluted ones the 1/2 Cd-bpp bipyramidal one. However, higher densities of the gel are generally associated to strained crystals. The solvent composition is also important, as for example the 1/2 Cd-bpp bipyramids require at least a minimum amount of ethanol to appear. We demonstrated that in gel the strict “equality” stoichiometric criteria for metal-to-ligand ratios can be sometimes eluded, as non–equilibrium concentrations can be locally attained. In this respect, the crystallization geometry was proven to act as a key tool to influence the crystallization output, as it determines the direction and magnitude of the concentration gradients. Finally, the use of U tubes to perform one-pot screenings of a large part of the crystallization space is discussed. Full article
(This article belongs to the Special Issue Crystal Growth in Gels)
Show Figures

Graphical abstract

Back to TopTop