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Abstract: The provisions for a new variational theory of crystal growth in multicomponent metal
melts were formulated. The developed theory is the generalization of the previously conducted
studies of crystal growth under conditions of deviation from local equilibrium at the phase boundary.
The description of the methods of non-equilibrium thermodynamics of interrelated physico-chemical
processes occurring in the initial phase, on the interface of phases and inside the growing crystal,
was compared with the variational description of the crystal growth as a macrobody. The developed
approach made it possible to find the general expression for the crystal growth rate, considering
the influence of thermal and diffusion processes, as well as taking into account the influence of
nonstationary effects associated with deviation from the local equilibrium on the surface of the
growing nucleus. The justification of the new method showed that when the condition of the local
equilibrium on the surface of the growing crystal is satisfied, the resulting equations take the form of
expressions that can be obtained by constructing the equation of a mass and internal energy balance
for the system under consideration. As an example, the problem of crystal growth from a melt
of eutectic composition was considered. The equation of the growth rate of the two-component
nucleus of the stoichiometric composition was obtained, taking into account the influence of the
local non-equilibrium effects on growth. The expressions obtained were compared with the known
equations of the solute trapping theory.

Keywords: non-equilibrium thermodynamics; variational principles; diffusionless crystal growth;
solute trapping

1. Introduction

Recently, there has been an active development of theoretical methods for investigating
crystal growth [1]. The task of the many studies has been to build universal models
describing the patterns of crystal growth from multicomponent melt under various physico-
chemical conditions. The classical approach [1–3] of this description assumes that crystal
growth is limited by the diffusion of components from the melt and the local equilibrium is
established on the crystal surface. Therefore, the equilibrium lines on the state diagram
can be used to determine the concentration values of the components on the surface of
the nucleus.

Meanwhile, this approach becomes inapplicable for a number of tasks related to the
description of diffusionless growth [1,4,5]. For example, in supercooled metal melts, the
effect of rapid crystal growth was observed. The crystallization front captures impurity
atoms that do not have enough time to diffuse from the surface of the nucleus. Modeling
of these effects has become the starting stage for constructing the solute trapping theory,
which allows us to take into account the influence of deviation from the local equilibrium
on the growth equations [4–11]. One of the directions of the theory development is the local
non-equilibrium model, which allows describing the influence of solute trapping effects on
the crystal growth rate [7–11].

A new method for taking these effects into account is the phase field theory [12–14].
The research with this approach has made it possible to conduct studies of crystals in
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various systems, while calculations make it possible to predict not only the growth rate of
crystals, but also to study their morphology [15,16].

Another important theoretical approach is the application of non-equilibrium ther-
modynamics methods [17–19] to describe the nucleus growth [1–3]. The complexity and
at the same time the advantage of this approach lies in the need for a more complete
description of the system. The developed model should take into account thermal and
diffusion processes in the phase of the growing nucleus and in the phase of the initial
multicomponent melt, as well as processes of the components’ transition across the phase
interface. For the development of this method, we previously proposed the variational
approach [20] that allows considering the effects associated with deviation from the local
equilibrium. This approach has been applied to the practical description of the various
systems [20–23]. In this paper, a theoretical justification of the developed method is carried
out, which allows us to assess the limits of its applicability and compare the findings with
the other approaches.

2. Description of the Nucleus Growth Process by Non-Equilibrium
Thermodynamics Methods

To substantiate the developed approach, the process of crystal growth from metal melt
is described in the most general form (Figure 1).
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Figure 1. Diagram of the growth of a new phase particle from melt.

The initial phase of the solution (phase Ψ) is considered as a system consisting of m
components <Ψ

1 , <Ψ
2 , . . . , <Ψ

m. The n-component nucleus (phase Φ) grows in the melt. The
growth of the nucleus is determined by diffusion Ji and heat fluxes Jq in both phases, as
well as processes at the interface of phases F. In this case, the process of the components’
transition through the surface can be represented as [3,19]

n11<ψ1 + n12<ψ2 + . . . + n1m<ψm → ℵΦ
1 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,
nn1<ψ1 + nn2<ψ2 + . . . + nnm<ψm → ℵΦ

n ,
(1)

where ℵΦ
i are the products of the chemical reactions, nij are the stoichiometric coefficients

(i = 1, . . . , n; j = 1, . . . , m).
In this description, we will not focus on the morphology of the growing crystal. Rather,

we will simply assume that the nucleus has a spherical shape of a radius R and the condition
of spherical symmetry is satisfied. The external boundaries of the system are considered
to be sufficiently remote from the surface of the nucleus. To simplify, we will consider the
area occupied by the entire system to be a sphere of radius RV , with the origin in the center
of the growing particle.

To study the system, we will use the methods of non-equilibrium thermodynamics.
At the initial stages of crystallization, the interrelated physico-chemical processes inside
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the nucleus, at the interface of phases and in the initial phase near the growing nucleus,
have a key influence on the crystal growth. At the same time, for a short time interval, the
system can be considered as isolated. With this definition, the entropy production of the
system can be written as [3,19]

P =
∫

VΦ

σΦdV +
∫

VΨ

σΨdV +
∫

FΦ

σFdF, (2)

where σΦ, σΨ and σF are the rates of the entropy production in the corresponding phases
and the volumes of the corresponding phases are at the interface, VΦ and VΨ. Subsequently,
we will use a well-known expression for the rate of entropy production [19] in the nucleus
and melt phases

σΦ = JΦ
q · XΦ

q +
n

∑
i=1

JΦ
i · XΦ

i , XΦ
q = grad

(
1
T

)
, XΦ

i = − 1
T

[
grad µΦ

i

]
T

(3)

σΨ = JΨ
q · XΨ

q +
m

∑
j=1

JΨ
j · XΨ

j , XΨ
q = grad

(
1
T

)
, XΨ

j = − 1
T

[
grad µΨ

j

]
T

(4)

where µΦ
i and µΨ

i are chemical potentials of the components in the corresponding phases.
The quantities XΦ

q , XΦ
i , XΨ

q , XΨ
j represent thermodynamic forces, and JΦ

q , JΦ
i , JΨ

q , JΨ
j

(i = 1, . . . , n, j = 1, . . . , m) are the corresponding thermodynamic fluxes.
[
grad µΦ

i
]

T

and
[
grad µΨ

j

]
T

are gradients of the chemical potentials, calculated under the condition of
temperature constancy.

Assuming the assumption of a linear relationship between thermodynamic fluxes
and thermodynamic forces and using the well-known Onsager method, it is possible to
transform the expressions (3) and (4) into the usual diffusion and thermal conductivity
equations [3,19].

The situation is much more complicated with the description of the processes at the
interface of phases. As mentioned earlier, the processes on the surface can be represented as
chemical reactions (1) reflecting the transition of components through the phase interface.
The rate of the entropy production for this process can be written as [3,19,20]

σF =
n

∑
i=1

Ii A∗i , A∗i = Ai/T (5)

where Ii is the molar rate of the product ℵΦ
i generation per unit area of the phase interface,

and Ai is the affinity of the ith chemical reaction (1) at the boundary of the crystal-melt. The
quantity Ii is the scalar flux of the ith component through the interface, and the quantity
A∗i is the corresponding thermodynamic force. In the case of a linear dependence of the
quantities Ii and A∗i , the application of the Onsager principle allows us to universally
transform the Equation (5) [19]. Meanwhile, for several systems, when deviating from
the local equilibrium, the linear dependence is not always preserved. Therefore, the
methods of linear non-equilibrium thermodynamics are inapplicable for conditions of
diffusionless growth, and the problem (1)–(5) has no direct solution within the framework
of the described approach.

3. Variational Theory of Nucleus Growth in Multicomponent Melt

One of the well-known variational principles of non-equilibrium thermodynamics is
the principle of minimum entropy production [19,24]. This principle assumes the condition
of minimum entropy production at a given time. Within the framework of the classical
approach for continuous systems, it is necessary to consider entropy production as a func-
tion of forces and fluxes at each point of the system. Therefore, finding the minimum
of such a function leads to a complex integral expression that requires finding deriva-
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tives of forces and fluxes in time at each point of the system. Such an equation has no
simple solution.

We proposed a different approach [20]. For a wide class of problems related to primary
crystallization, we can consider our system as isolated for a short time interval. It can then
be argued that the minimum should not only be the production of entropy at a given time,
but also the total production of entropy for the fixed period of time. The total entropy

production can be defined by the function of the form Π[t1,t2]
=

t2∫
t1

P(t)dt, where P(t) is

the entropy production at the time t, and [t1, t2] is the time period under consideration.
Subsequently, by analogy with the problems of mechanics [25,26], it can be argued that our
system, being isolated from the external influences, would take the path of minimal length
from the t1 moment to the t2 moment.

The function P(t) depends on many quantities, including the function R(t) (the radius
of the growing nucleus), of interest to us. Let us consider the functional Π[t1,t2]

(R) =
t2∫

t1

P
(

t, R,
.
R
)

dt. The minimum of entropy production at each time t will correspond to a

set of functions satisfying this minimum. The deviation of any function would lead to
a deviation of the integral from the minimum value. Therefore, if there is the function
R(t) for which the minimum condition for Π[t1,t2]

is fulfilled, then replacing R(t) with
any R(t) + δR(t) will increase the value of the functional Π[t1,t2]

. Applying to Π[t1,t2]
the

Euler–Lagrange equation [26], we obtain

d
dt

∂P

∂
.
R
− ∂P

∂R
= 0 (6)

Thus, to solve the problem (1–5) in general, we can use expression (6). First, we need to find
the value of the first term of Equation (6). The first two integrals (2) characterize the state
of the phases Φ and Ψ; they do not depend on the rate of change of the radius. Therefore,
we can write

d
dt

∂P

∂
.
R

=
d
dt

∫
FΦ

∂

∂
.
R

n

∑
i=1

Ii Ai
T

dF (7)

Subsequently, we write down the expression for the affinity of the ith chemical reaction (2).
To do this, we will use Prigogine’s expression for multiphase systems [27]

Ai = −
(

m

∑
j=1

vijµ
Ψ
j + viµ

Φ
i

)
(8)

where vij = −M<Ψ
j

nij, vi = MℵΦ
i

, MℵΦ
i

is the molecular mass of the corresponding compo-

nent. The quantity Ai does not depend on the rate of radius change, but it depends rather
on the radius due to the influence of the surface tension. This effect can be neglected for
not very small, supercritical particles. Therefore, considering the spherical symmetry of
our system, we can rewrite (7) in the form

d
dt

∂P

∂
.
R

= 4π
d
dt

(
R2

n

∑
i=1

Ai
T

∂Ii

∂
.
R

)
(9)

We can now consider the second term of expression (6). Using the formula of the
derivative of the integral with a variable upper limit and the spherical symmetry of the
system, we can write for the first two terms (2)

∂

∂R

∫
VΦ

σΦdV +
∂

∂R

∫
VΨ

σΨdV = 4πR2
[
σΦ − σΨ

]
r=R

(10)
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To find the derivative ∂
∂R

∫
FΦ

σFdF, it is necessary to use (5) and (8) to separate the

parameters related to the phases Φ and Ψ. Furthermore, with certain assumptions, applying
the Gauss–Ostrogradsky equation to the inner and outer sides of the surface F, we can
write [18]

∂P
∂R

= 4πR2
[
σΦ + div

(
nFσF

)
− σΨ

]
r=R

(11)

Below we will consider only the processes on the surface of the nucleus; therefore, for the
simplicity of expression, we will not separately highlight the r = R condition. Finally,
combining (6), (9) and (11) and using (3)–(5) for more detailed conclusions, we write

R2

[(
JΦ

q − JΨ
q

)
· grad

(
1
T

)
− 1

T

(
n
∑

i=1
JΦ

i ·
[
grad µΦ

i
]

T −
m
∑

j=1
JΨ

j ·
[
grad µΨ

j

]
T

)
+

+div
(

nF
n
∑

i=1
Ii

Ai
T

)]
− d

dt

(
R2

n
∑

i=1

Ai
T

∂Ii

∂
.
R

)
= 0

(12)

The resulting equation is the general expression that allows calculating the growth
rate of the nucleus together with the equations describing the processes in the volumes
of the phases taking into account the interrelated thermal and diffusion processes at the
boundary of the phases. At the same time, the expression does not use simplified linear non-
equilibrium thermodynamics, which makes it possible to take into account the non-linear
effects related to the deviation from equilibrium on the surface of the growing nucleus.

4. Incorporation of Existing Theories into the Developed Variational Technique

The resulting equation (12) is a convenient expression for practical calculations and it
has been used to study the various systems [20–23]. In the present work, we additionally
transform expression (12) for comparison with the results of other researchers. To do this,
we use the expression µi = hi − Tsi, which connects the chemical potential with the specific
entropy si and enthalpy hi.

Let us write down the expression grad µi
T = 1

T [gradµi]T + higrad
(

1
T

)
[17]. Thus,

converting the second to the last term (12) and additionally using (8), we obtain

div
(

nF
n
∑

i=1
Ii

Ai
T

)
=

n
∑

i=1

Ai
T div(nF Ii)−

n
∑

i=1

IinF
T ·

(
m
∑

j=1
vij

[
gradµΨ

j

]
T
+ vi

[
gradµΦ

i
]

T

)
−

−
n
∑

i=1
Ii

(
m
∑

j=1
vijhΨ

i + vihΦ
i

)
nF · grad

(
1
T

) (13)

We introduce an additional designation for the molar enthalpy of the product formation ℵΦ
i

∆Hi =
m

∑
j=1

vijhΨ
i + vihΦ

i (14)

Substituting (13) and (14) into (12), we obtain

R2
[

JΦ
q − JΨ

q −
n
∑

i=1
Ii∆HinF

]
· grad

(
1
T

)
−

− R2

T

[
n
∑

i=1

[
grad µΦ

i
]

T ·
(
JΦ

i + nFvi Ii
)
+

m
∑

j=1

[
grad µΨ

j

]
T
·
(

n
∑

i=1
vij IinF − JΨ

j

)]
+

+R2
n
∑

i=1

Ai
T div(nF Ii)− d

dt

(
R2

n
∑

i=1

Ai
T

∂Ii

∂
.
R

)
= 0

(15)
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For further transformation of this equation, the expression for the growth rate of the
nucleus is considered. The growth rate is determined by the sum of the molar rates of the
product formation Ii for each of the components [20]

ρΦ
.
R =

n

∑
i=1

MℵΦ
i

IΦ
i (16)

Without taking into account the cross effects associated with the diffusion of various
components and using (13), we can simply write an expression of the form [20]

Ii = χi
ρΦ

MℵΦ
i

.
R (17)

the quantities χi can be considered as the coefficients of the participation of the ith com-
ponent in the formation of a new phase. In the first approximation, the coefficient χi
can be assumed to be equal to the average concentration cΦ

i of the ith component in the
growing nucleus.

The molar rate of the product formation Ii is determined only at the interface of the
phases and does not depend on r. Therefore, taking into account the spherical symmetry of
the system and the expression (17), it is possible to simplify the expression for the second
to last term (15)

R2
n

∑
i=1

Ai
T

div(nF Ii) = 2R
n

∑
i=1

Ai
T

Ii (18)

Subsequently, taking into account (17), we write

d
dt

(
R2

n

∑
i=1

Ai
T

∂Ii

∂
.
R

)
=

d
dt

(
R2

n

∑
i=1

ρΦ
i

MℵΦ
i

Ai
T

)
= 2R

n

∑
i=1

Ai
T

Ii + R2
n

∑
i=1

ρΦ
i

MℵΦ
i

d
dt

(
Ai
T

)
(19)

and we will rewrite (15) in the form[
JΦ

q − JΨ
q −

n
∑

i=1
Ii∆HinF

]
.grad

(
1
T

)
−

− 1
T

[
n
∑

i=1

[
grad µΦ

i
]

T ·
(
JΦ

i + nFvi Ii
)
+

m
∑

j=1

[
grad µΨ

j

]
T
·
(

n
∑

i=1
vij IinF − JΨ

j

)]
−

n
∑

i=1

ρΦ
i

MℵΦ
i

d
dt

(
Ai
T

)
= 0

(20)

To simplify the resulting expression, let us consider the second term separately. We
transform the resulting equation to the balance equation of the known type. It follows

from the Gibbs–Duhem equation [26] that at constant pressure
n
∑

i=1
cΦ

i
[
grad µΦ

i
]

T= 0 and

m
∑

j=1
cΨ

j

[
grad µΨ

j

]
T

= 0. Therefore, the following condition is satisfied

− 1
T

[
n

∑
i=1

cΦ
i

[
grad µΦ

i

]
T
−

m

∑
j=1

cΨ
j

[
grad µΨ

j

]
T

]
nF

n

∑
k=1

νk Ik = 0 (21)

[
JΦ

q − JΨ
q −

n
∑

i=1
Ii∆HinF

]
· grad

(
1
T

)
−

− 1
T

n
∑

i=1

[
grad µΦ

i
]

T ·
(

JΦ
i + nFvi Ii − cΦ

i nF
n
∑

k=1
νk Ik

)
−

− 1
T

m
∑

j=1

[
grad µΨ

j

]
T
·
(

n
∑

i=1

(
vij + cΨ

j νi

)
IinF − JΨ

j

)
−

n
∑

i=1

ρΦ
i

MℵΦ
i

d
dt

(
Ai
T

)
= 0

(22)
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To compare the obtained expression with the existing models, we consider separately
the case of the local equilibrium on the surface of the growing nucleus and the case when
the condition of local equilibrium is not satisfied.

4.1. The Case of Local Equilibrium

The last term of expression (22) characterizes non-linear effects [18–21]. Indeed, under
the condition of the local equilibrium, the equalities Ai = 0 and dAi/dt = 0 are fulfilled,
and the last term of the expression vanishes. Expression (22) takes the following form[

JΦ
q − JΨ

q −
n
∑

i=1
Ii∆HinF

]
· grad

(
1
T

)
−

− 1
T

n
∑

i=1

[
grad µΦ

i
]

T ·
[

JΦ
i + nFvi Ii − cΦ

i nF
n
∑

k=1
νk Ik

]
−

− 1
T

m
∑

j=1

[
grad µΨ

j

]
T
·
[

n
∑

i=1

(
vij + cΨ

j νi

)
IinF − JΨ

j

] (23)

Let us now consider the system under various particular conditions.

(1) Let us have a one-component system. The concentrations of the components do not
change in the system (the second and third terms are reset to zero). The expression (23)
takes the form of a well-known expression for the heat release rate at the boundary [3]

JΨ
q − JΦ

q + nF

n

∑
i=1

Ii∆Hi = 0 (24)

(2) The temperature of the system and the concentrations of the components in phase Ψ
do not change (the first and third terms are reset to zero). Expression (23) in scalar
form takes the form of the expression for the densities of diffusion fluxes in the
phase Φ

JΦ
i = cΦ

i

n

∑
k=1

νk Ik − vi Ii (25)

(3) The temperature of the system and the concentrations of components in the phase
Φ do not change (the first and second terms are reset to zero). Expression (23) in
scalar form takes the form of the expression of the densities of diffusion fluxes in the
phase Ψ

JΨ
j =

n

∑
i=1

(
vij + cΨ

j νi

)
Ii (26)

Expressions (25) and (26) can be derived from the mass balance expressions for phase
Φ and phase Ψ [3,19], respectively.

Meanwhile, it should be noted that expressions (24)–(26) do not take into account the
effects associated with high-speed movement of the phase interface. Therefore, with a local
deviation from the equilibrium, expressions (24)–(26) cannot be applied. The fluxes in these
equations are “equilibrium” fluxes corresponding to the conditions of the local equilibrium.

4.2. The Locally Non-Equilibrium Case

Let us consider a more general case where the condition of the local equilibrium
on the surface of the growing nucleus is not fulfilled. Considering the expression for
affinity (8) and equality vi = MℵΦ

i
, we rewrite the last term of expression (22)

−
n

∑
i=1

ρΦ
i

MℵΦ
i

d
dt

(
Ai
T

)
=

1
T2

n

∑
i=1

ρΦ
i Ai

MℵΦ
i

dT
dt

+
1
T

m

∑
j=1

dµΨ
j

dt

n

∑
i=1

ρΦ
i vij

MℵΦ
i

+
1
T

n

∑
i=1

ρΦ
i

dµΦ
i

dt
(27)
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Substituting (27) into (22), we obtain

− 1
T2

[
JΦ

q − JΨ
q −

n
∑

i=1
(Ii∆HinF)

]
· gradT + 1

T2

n
∑

i=1

ρΦ
i Ai

MℵΦ
i

dT
dt −

− 1
T

n
∑

i=1

[
grad µΦ

i
]

T ·
(

JΦ
i + nFvi Ii − cΦ

i nF
n
∑

k=1
νk Ik

)
+ 1

T

n
∑

i=1
ρΦ

i
dµΦ

i
dt −

− 1
T

m
∑

j=1

[
grad µΨ

j

]
T
·
(

n
∑

i=1

(
vij + cΨ

j νi

)
IinF − JΨ

j

)
+ 1

T

m
∑

j=1

dµΨ
j

dt

n
∑

i=1

ρΦ
i vij

MℵΦ
i

(28)

The resulting expression differs from (23) by nonstationary terms that reflect non-linear
thermal and diffusion effects on the surface of the growing nucleus. When we approach
the local equilibrium at the phase interface, these terms vanish. We obtain the known linear
equations of non-equilibrium thermodynamics (23)–(26).

Considering the obtained nonstationary terms, we can draw an analogy with the well-
known local non-equilibrium model [7–11]. The presence of the nonstationary terms [16]
determines the change in the growth rate of the nucleus due to deviation from the local
equilibrium. In the next section, it will be shown that in the practical description of the
simplified two-component system, the resulting equations have obvious similarities.

Thus, we have obtained a general solution to the system of equations of nucleus
growth in multicomponent metal melt both for the case of the local equilibrium at the
interface of phases and for the local non-equilibrium case.

5. Crystal Growth in Two-Component Melt of an Eutectic Composition

The obtained expressions can be used to build general models of crystal growth taking
into account the influence of thermal and diffusion processes in the nucleus and melt phase.
This approach assumes a description of processes in the nucleus and melt phase using the
diffusion and thermal conductivity equations, as well as use of the obtained equations to
describe processes at the interface of phases. The resulting description represents the Stefan
problem, which can be solved numerically.

Meanwhile, for a number of tasks, a simplified approach to estimating the growth
rate of the nucleus can be applied directly on the basis of the obtained equations for the
phase interface. Based on this method, we carried out practical calculations for various
systems [20–23]. This paper presents a general theoretical derivation of the expression for
the rate of crystal growth from eutectic melt.

Crystals of various phases can form in the melt of a eutectic composition. Continuing
the reasoning of the previous section, let us consider the growth of a nucleus of one of the
phases of stoichiometric composition ℵΦ from a multicomponent eutectic melt. With this
definition, since n = 1, equations (1) are reduced to one equation

n1<ψ1 + n2<ψ2 + . . . + nm<ψm → ℵΦ (29)

Because our nucleus has an invariable stoichiometric composition, the diffusion fluxes in
the nucleus are zero. Accordingly, expression (12) can be rewritten as

R2

[(
JΦ

q − JΨ
q

)
· grad

(
1
T

)
+

1
T

m

∑
j=1

JΨ
j ·
[
grad µΨ

j

]
T
+ div

(
nF I

A
T

)]
− d

dt

(
R2 A

T
∂I

∂
.
R

)
= 0 (30)

We subsequently consider the case when the local non-equilibrium conditions can be
determined only by diffusion processes. Equation (24) can then be applied to our expression.
Transforming (30) and taking into account the spherical symmetry of the system, we write
in scalar form

R2

T2 I∆H
∂T
∂r

+
R2

T

m

∑
i=1

JΨ
i

[
∂µΨ

i
∂r

]
T

+I
∂

∂r

(
r2 A

T

)
− d

dt

(
R2 A

T
∂I

∂
.
R

)
= 0 (31)
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Given (17) for n = 1, it is possible to rewrite the last term of the expression

d
dt

(
R2 A

T
I
.
R

)
= 2R

A
T

I + R2 ρΦ

MℵΦ

d
dt

(
A
T

)
(32)

Finally, taking into account (32), we will rewrite (31) in the form

I =

m
∑

i=1
JΨ
i

[
∂µΨ

i
∂r

]
T
− T ρΦ

MℵΦ
d
dt

(
A
T

)
∆H
T

∂T
∂r + T ∂

∂r

(
A
T

) (33)

The resulting expression allows us to calculate the growth rate of the nucleus. At

the same time, the second term −T ρΦ

MℵΦ
d
dt

(
A
T

)
in the numerator reflects the influence of

the non-linear effects associated with deviation from the local equilibrium. Under the
conditions of the local equilibrium this term vanishes, and expression (33) takes on the
simplified form

I =

m
∑

i=1
JΨ
i

[
∂µΨ

i
∂r

]
T

∆H
T

∂T
∂r + T ∂

∂r

(
A
T

) (34)

Let us compare the obtained expression with the known equations of the solute
trapping theory [4–11]. To do this, we consider a particular case of the nucleus growth in
the system consisting of two components A and B. In addition, we will assume that thermal
processes on the surface of the growing nucleus do not significantly affect its growth. Thus,
the expression (33), taking into account the relationship of diffusion fluxes, will take
the form

I =
JΨ
A

([
∂µΨ

A
∂r

]
T
−
[

∂µΨ
B

∂r

]
T

)
− ρΦ

MℵΦ
dA
dt

∂A
∂r

(35)

Furthermore, taking into account the expression for the affinity of the chemical reaction (8),
using the ideal solutions theory µΨ

i = µΨ0
i + RΓT ln cΨ

i , as well as taking into account the
constancy of the concentration of the product inside the nucleus and equality cΨ

A + cΨ
B = 1,

we write down the expression (35) in the new form

I =
MAcΨ

B + MBcΨ
A

MAcΨ
B −MBcΨ

A
JΨ
A −

ρΦ

MℵΦ

dcΨ
A/dt

∂cΨ
A/∂r

(36)

In addition, taking into account (16), it is finally possible to write down the expression for
the growth rate of the nucleus

.
R =

MℵΦ

ρΦ
MAcΨ

B + MBcΨ
A

MAcΨ
B −MBcΨ

A
JΨ
A −

dcΨ
A/dt

∂cΨ
A/∂r

(37)

The first term of this expression determines the contribution of the diffusion of components
in the process of nucleus growth. The second term defines non-linear effects. Under the
condition of the local equilibrium, this term vanishes.

When we analyze the resulting expression, an analogy can be drawn with the well-
known expression of the local non-equilibrium model [7–11]

J(r, t) = −D∇c− τD
∂J(r, t)

∂t
(38)

where c is concentration of the impurity component, J(r, t) is the impurity flux to the
surface of the growing nucleus, and D is the diffusion coefficient. The relaxation time τD
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is zero when the local equilibrium condition is satisfied. In this case, the term τD
∂J(r,t)

∂t
characterizes the influence of the solute trapping effects.

The resulting expression (36) differs from expression (37), since our expression re-
flects the growth rate of the crystal, and expression (38) is the expression of the impurity
flux to the surface of the crystal. Meanwhile, it is possible to compare the second terms
reflecting the influence of the nonstationary effects on the growth of the nucleus. As can
be seen, both equations reflect nonstationary concentration effects on the interface of the
phases. Comparative calculations based on both methods may become a further direction
for research.

6. Conclusions

In this paper, for the first time it has been possible to obtain detailed theoretical
justification for the new theoretical approach to the description of crystal growth in mul-
ticomponent metal melts by methods of non-equilibrium thermodynamics. The use of
the new variational method made it possible to find a solution to the obtained equations
under conditions of deviation from the local equilibrium. The substantiation of the new
method showed that if the condition of the local equilibrium at the surface of the growing
crystal is satisfied, the resulting equations take the form of expressions that can be obtained
by constructing the equation of mass balance and internal energy balance for the system
under consideration. Such a generalized description of the nucleus–melt system makes it
possible to apply the methods of non-equilibrium thermodynamics to nonlinear growth
problems when the condition of the local equilibrium is not met. In the case of deviation
from the local equilibrium, the growth equations of the nucleus are obtained, including the
additional nonstationary terms. At the same time, the separately considered particular case
of crystal growth from the two-component eutectic melt showed the correspondence of the
obtained expressions to the equations of the solute trapping theory.

Based on the general description of the nucleus–melt system by non-equilibrium
thermodynamic methods, an important feature of our approach is the possibility of its
expansion to take into account the influence of additional factors affecting the crystal
growth. As an example, we can consider the effect of changes in the average concentration
of components in the system. Such a special case of the application of growth equations
in the description of macro-crystallization processes is considered in one of our research
papers [21]. This feature of the method can be used for joint studies of crystal growth using
the various methods.
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