Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = stimulus artifact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4973 KiB  
Article
A Hybrid CNN-LSTM Approach for Muscle Artifact Removal from EEG Using Additional EMG Signal Recording
by Marcin Kołodziej, Marcin Jurczak, Andrzej Majkowski, Andrzej Rysz and Bartosz Świderski
Appl. Sci. 2025, 15(9), 4953; https://doi.org/10.3390/app15094953 - 29 Apr 2025
Viewed by 990
Abstract
Removing artifacts from electroencephalography (EEG) signals is a common technique. Although numerous algorithms have been proposed, most rely solely on EEG data. In this study, we introduce a novel approach utilizing a hybrid convolutional neural network–long short-term memory (CNN-LSTM) architecture alongside simultaneous recording [...] Read more.
Removing artifacts from electroencephalography (EEG) signals is a common technique. Although numerous algorithms have been proposed, most rely solely on EEG data. In this study, we introduce a novel approach utilizing a hybrid convolutional neural network–long short-term memory (CNN-LSTM) architecture alongside simultaneous recording of facial and neck EMG signals. This setup enables the precise elimination of artifacts from the EEG signal. To validate the method, we collected a dataset from 24 participants who were presented with a light-emitting diode (LED) stimulus that elicited steady-state visual evoked potentials (SSVEPs) while they performed strong jaw clenching, an action known to induce significant artifacts. We then assessed the algorithm’s ability to remove artifacts while preserving SSVEP responses. The results were compared against other commonly used algorithms, such as independent component analysis and linear regression. The findings demonstrate that the proposed method exhibits excellent performance, effectively removing artifacts while retaining the EEG signal’s useful components. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

10 pages, 806 KiB  
Article
P1 and N1 Characteristics in Individuals with Normal Hearing and Hearing Loss, and Cochlear Implant Users: A Pilot Study
by Hye Yoon Seol, Soojin Kang, Sungkean Kim, Jihoo Kim, Euijin Kim, Sung Hwa Hong and Il Joon Moon
J. Clin. Med. 2024, 13(16), 4941; https://doi.org/10.3390/jcm13164941 - 22 Aug 2024
Viewed by 1423
Abstract
Background: It has been reported in many previous studies that the lack of auditory input due to hearing loss (HL) can induce changes in the brain. However, most of these studies have focused on individuals with pre-lingual HL and have predominantly compared the [...] Read more.
Background: It has been reported in many previous studies that the lack of auditory input due to hearing loss (HL) can induce changes in the brain. However, most of these studies have focused on individuals with pre-lingual HL and have predominantly compared the characteristics of those with normal hearing (NH) to cochlear implant (CI) users in children. This study examined the visual and auditory evoked potential characteristics in NH listeners, individuals with bilateral HL, and CI users, including those with single-sided deafness. Methods: A total of sixteen participants (seven NH listeners, four individuals with bilateral sensorineural HL, and five CI users) completed speech testing in quiet and noise and evoked potential testing. For speech testing, the Korean version of the Hearing in Noise Test was used to assess individuals’ speech understanding ability in quiet and in noise (noise from the front, +90 degrees, and −90 degrees). For evoked potential testing, visual and auditory (1000 Hz, /ba/, and /da/) evoked potentials were measured. Results: The results showed that CI users understood speech better than those with HL in all conditions except for the noise from +90 and −90 degrees. In the CI group, a decrease in P1 amplitudes was noted across all channels after implantation. The NH group exhibited the highest amplitudes, followed by the HL group, with the CI group (post-CI) showing the lowest amplitudes. In terms of auditory evoked potentials, the smallest amplitude was observed in the pre-CI condition regardless of the type of stimulus. Conclusions: To the best of our knowledge, this is the first study that examined visual and auditory evoked potentials based on various hearing profiles. The characteristics of evoked potentials varied across participant groups, and further studies with CI users are necessary, as there are significant challenges in collecting and analyzing evoked potentials due to artifact issues on the CI side. Full article
Show Figures

Figure 1

14 pages, 12687 KiB  
Article
Redesigned Electrodes for Improved Intraoperative Nerve Conduction Studies during the Treatment of Peripheral Nerve Injuries
by Nathaniel Riemann, Jack Coursen, Laura Elena Porras, Bryan Sabogal, Xin-Hua Liang, Christian Guaraca, Allan Belzberg, Matthias Ringkamp, Gang Wu, Lily Zhu, Samantha Weed and Constanza Miranda
Healthcare 2024, 12(13), 1269; https://doi.org/10.3390/healthcare12131269 - 26 Jun 2024
Viewed by 2581
Abstract
Traumatic peripheral nerve injuries (PNI), present with symptoms ranging from pain to loss of motor and sensory function. Difficulties in intraoperative visual assessment of nerve functional status necessitate intraoperative nerve conduction studies (INCSs) by neurosurgeons and neurologists to determine the presence of functioning [...] Read more.
Traumatic peripheral nerve injuries (PNI), present with symptoms ranging from pain to loss of motor and sensory function. Difficulties in intraoperative visual assessment of nerve functional status necessitate intraoperative nerve conduction studies (INCSs) by neurosurgeons and neurologists to determine the presence of functioning axons in the zone of a PNI. This process, also referred to as nerve “inching”, uses a set of stimulating and recording electrode hooks to lift the injured nerve from the surrounding surgical field and to determine whether an electrical stimulus can travel through the zone of injury. However, confounding electrical signal artifacts can arise from the current workflow and electrode design, particularly from the mandatory lifting of the nerve, complicating the definitive assessment of nerve function and neurosurgical treatment decision-making. The objective of this study is to describe the design process and verification testing of our group’s newly designed stimulating and recording electrodes that do not require the lifting or displacement of the injured nerve during INCSs. Ergonomic in vivo analysis of the device within a porcine model demonstrated successful intraoperative manipulation of the device, while quantitative nerve action potential (NAP) signal analysis with an ex vivo simulated “inching” procedure on healthy non-human primate nerve tissue demonstrated excellent reproducible recorded NAP fidelity and the absence of NAP signal artifacts at all points of recording. Lastly, electrode pullout force testing determined maximum forces of 0.43 N, 1.57 N, and 3.61 N required to remove the device from 2 mm, 5 mm, and 1 cm nerve models, respectively, which are well within established thresholds for nerve safety. These results suggest that these new electrodes can safely and successfully perform accurate PNI assessment without the presence of artifacts, with the potential to improve the INCS standard of care while remaining compatible with currently used neurosurgical technology, infrastructure, and clinical workflows. Full article
(This article belongs to the Special Issue Outcome Measures and Innovative Approaches in Rehabilitation)
Show Figures

Figure 1

9 pages, 292 KiB  
Article
A Deep Learning Model for Correlation Analysis between Electroencephalography Signal and Speech Stimuli
by Michele Alessandrini, Laura Falaschetti, Giorgio Biagetti, Paolo Crippa, Simona Luzzi and Claudio Turchetti
Sensors 2023, 23(19), 8039; https://doi.org/10.3390/s23198039 - 23 Sep 2023
Cited by 4 | Viewed by 2995
Abstract
In recent years, the use of electroencephalography (EEG) has grown as a tool for diagnostic and brain function monitoring, being a simple and non-invasive method compared with other procedures like histological sampling. Typically, in order to extract functional brain responses from EEG signals, [...] Read more.
In recent years, the use of electroencephalography (EEG) has grown as a tool for diagnostic and brain function monitoring, being a simple and non-invasive method compared with other procedures like histological sampling. Typically, in order to extract functional brain responses from EEG signals, prolonged and repeated stimuli are needed because of the artifacts generated in recordings which adversely impact the stimulus-response analysis. To mitigate the artifact effect, correlation analysis (CA) methods are applied in the literature, where the predominant approaches focus on enhancing stimulus-response correlations through the use of linear analysis methods like canonical correlation analysis (CCA). This paper introduces a novel CA framework based on a neural network with a loss function specifically designed to maximize correlation between EEG and speech stimuli. Compared with other deep learning CA approaches (DCCAs) in the literature, this framework introduces a single multilayer perceptron (MLP) network instead of two networks for each stimulus. To validate the proposed approach, a comparison with linear CCA (LCCA) and DCCA was performed, using a dataset containing the EEG traces of subjects listening to speech stimuli. The experimental results show that the proposed method improves the overall Pearson correlation by 10.56% compared with the state-of-the-art DCCA method. Full article
Show Figures

Figure 1

16 pages, 2260 KiB  
Article
Anesthesia Depresses Cerebrovascular Reactivity to Acetazolamide in Pediatric Moyamoya Vasculopathy
by Pieter T. Deckers, Jeroen C. W. Siero, Maarten O. Mensink, Annick Kronenburg, Kees P. J. Braun, Albert van der Zwan and Alex A. Bhogal
J. Clin. Med. 2023, 12(13), 4393; https://doi.org/10.3390/jcm12134393 - 29 Jun 2023
Cited by 4 | Viewed by 2115
Abstract
Measurements of cerebrovascular reactivity (CVR) are essential for treatment decisions in moyamoya vasculopathy (MMV). Since MMV patients are often young or cognitively impaired, anesthesia is commonly used to limit motion artifacts. Our aim was to investigate the effect of anesthesia on the CVR [...] Read more.
Measurements of cerebrovascular reactivity (CVR) are essential for treatment decisions in moyamoya vasculopathy (MMV). Since MMV patients are often young or cognitively impaired, anesthesia is commonly used to limit motion artifacts. Our aim was to investigate the effect of anesthesia on the CVR in pediatric MMV. We compared the CVR with multidelay-ASL and BOLD MRI, using acetazolamide as a vascular stimulus, in all awake and anesthesia pediatric MMV scans at our institution. Since a heterogeneity in disease and treatment influences the CVR, we focused on the (unaffected) cerebellum. Ten awake and nine anesthetized patients were included. The post-acetazolamide CBF and ASL-CVR were significantly lower in anesthesia patients (47.1 ± 15.4 vs. 61.4 ± 12.1, p = 0.04; 12.3 ± 8.4 vs. 23.7 ± 12.2 mL/100 g/min, p = 0.03, respectively). The final BOLD-CVR increase (0.39 ± 0.58 vs. 3.6 ± 1.2% BOLD-change (mean/SD), p < 0.0001), maximum slope of increase (0.0050 ± 0.0040%/s vs. 0.017 ± 0.0059%, p < 0.0001), and time to maximum BOLD-increase (~463 ± 136 and ~697 ± 144 s, p = 0.0028) were all significantly lower in the anesthesia group. We conclude that the response to acetazolamide is distinctively different between awake and anesthetized MMV patients, and we hypothesize that these findings can also apply to other diseases and methods of measuring CVR under anesthesia. Considering that treatment decisions heavily depend on CVR status, caution is warranted when assessing CVR under anesthesia. Full article
(This article belongs to the Special Issue Diagnosis and Treatment of Moyamoya Disease)
Show Figures

Figure 1

13 pages, 1800 KiB  
Article
Live Cell Light Sheet Imaging with Low- and High-Spatial-Coherence Detection Approaches Reveals Spatiotemporal Aspects of Neuronal Signaling
by Mariana Potcoava, Donatella Contini, Zachary Zurawski, Spencer Huynh, Christopher Mann, Jonathan Art and Simon Alford
J. Imaging 2023, 9(6), 121; https://doi.org/10.3390/jimaging9060121 - 16 Jun 2023
Cited by 2 | Viewed by 2180
Abstract
Light sheet microscopy in live cells requires minimal excitation intensity and resolves three-dimensional (3D) information rapidly. Lattice light sheet microscopy (LLSM) works similarly but uses a lattice configuration of Bessel beams to generate a flatter, diffraction-limited z-axis sheet suitable for investigating subcellular compartments, [...] Read more.
Light sheet microscopy in live cells requires minimal excitation intensity and resolves three-dimensional (3D) information rapidly. Lattice light sheet microscopy (LLSM) works similarly but uses a lattice configuration of Bessel beams to generate a flatter, diffraction-limited z-axis sheet suitable for investigating subcellular compartments, with better tissue penetration. We developed a LLSM method for investigating cellular properties of tissue in situ. Neural structures provide an important target. Neurons are complex 3D structures, and signaling between cells and subcellular structures requires high resolution imaging. We developed an LLSM configuration based on the Janelia Research Campus design or in situ recording that allows simultaneous electrophysiological recording. We give examples of using LLSM to assess synaptic function in situ. In presynapses, evoked Ca2+ entry causes vesicle fusion and neurotransmitter release. We demonstrate the use of LLSM to measure stimulus-evoked localized presynaptic Ca2+ entry and track synaptic vesicle recycling. We also demonstrate the resolution of postsynaptic Ca2+ signaling in single synapses. A challenge in 3D imaging is the need to move the emission objective to maintain focus. We have developed an incoherent holographic lattice light-sheet (IHLLS) technique to replace the LLS tube lens with a dual diffractive lens to obtain 3D images of spatially incoherent light diffracted from an object as incoherent holograms. The 3D structure is reproduced within the scanned volume without moving the emission objective. This eliminates mechanical artifacts and improves temporal resolution. We focus on LLS and IHLLS applications and data obtained in neuroscience and emphasize increases in temporal and spatial resolution using these approaches. Full article
(This article belongs to the Special Issue Fluorescence Imaging and Analysis of Cellular System)
Show Figures

Figure 1

12 pages, 2582 KiB  
Article
Auditory Fine-Tuned Suppressor of TMS-Clicks (TMS-Click AFTS): A Novel, Perceptually Driven/Tuned Approach for the Reduction in AEP Artifacts in TMS-EEG Studies
by Konstantinos Pastiadis, Ioannis Vlachos, Evangelia Chatzikyriakou, Yiftach Roth, Samuel Zibman, Abraham Zangen, Dimitris Kugiumtzis and Vasilios K. Kimiskidis
Appl. Sci. 2023, 13(2), 1047; https://doi.org/10.3390/app13021047 - 12 Jan 2023
Viewed by 2258
Abstract
TMS contaminates concurrent EEG recordings with Auditory Evoked Potentials (AEPs), which are caused by the perceived impulsive acoustic noise of the TMS coils. We hereby introduce a novel and perceptually motivated/tuned method for the suppression of auditory evoked EEG artifacts of rTMS under [...] Read more.
TMS contaminates concurrent EEG recordings with Auditory Evoked Potentials (AEPs), which are caused by the perceived impulsive acoustic noise of the TMS coils. We hereby introduce a novel and perceptually motivated/tuned method for the suppression of auditory evoked EEG artifacts of rTMS under the name of “Auditory Fine-Tuned Suppressor of TMS-Clicks” (TMS-click AFTS). The proposed method is based on the deployment of a psychophysically-matched wide-band noise (WBN) masking stimulus, whose parametric synthesis and presentation are based upon adaptive psychophysical optimization. The masking stimulus is constructed individually for each patient/subject, thus facilitating aspects of precision medicine. A specially designed automation software is used for the realization of an adaptive procedure for optimal parameterization of masking noise level, optimizing both the subject’s comfort and the degree of AEP reduction. The proposed adaptive procedure also takes into account the combined effect of TMS intensity level and can as well account for any possibly available subject’s hearing acuity data. To assess the efficacy of the proposed method in reducing the acoustic effects of TMS, we performed TMS-EEG recordings with a 60 channel TMS-compatible EEG system in a cohort of healthy subjects (n = 10) and patients with epilepsy (n = 10) under four conditions (i.e., resting EEG with and without acoustic mask and sham TMS-EEG with and without acoustic mask at various stimulus intensity levels). The proposed approach shows promising results in terms of efficiency of AEP suppression and subject’s comfort and warrants further investigation in research and clinical settings. Full article
(This article belongs to the Special Issue Personalized Brain Stimulation: Advances and Challenges)
Show Figures

Figure 1

11 pages, 2223 KiB  
Article
The Dominance of Anticipatory Prefrontal Activity in Uncued Sensory–Motor Tasks
by Merve Aydin, Anna Laura Carpenelli, Stefania Lucia and Francesco Di Russo
Sensors 2022, 22(17), 6559; https://doi.org/10.3390/s22176559 - 31 Aug 2022
Cited by 9 | Viewed by 2391
Abstract
Anticipatory event-related potentials (ERPs) precede upcoming events such as stimuli or actions. These ERPs are usually obtained in cued sensory–motor tasks employing a warning stimulus that precedes a probe stimulus as in the contingent negative variation (CNV) paradigms. The CNV wave has been [...] Read more.
Anticipatory event-related potentials (ERPs) precede upcoming events such as stimuli or actions. These ERPs are usually obtained in cued sensory–motor tasks employing a warning stimulus that precedes a probe stimulus as in the contingent negative variation (CNV) paradigms. The CNV wave has been widely studied, from clinical to brain–computer interface (BCI) applications, and has been shown to emerge in medial frontoparietal areas, localized in the cingulate and supplementary motor areas. Several dated studies also suggest the existence of a prefrontal CNV, although this component was not confirmed by later studies due to the contamination of ocular artifacts. Another lesser-known anticipatory ERP is the prefrontal negativity (pN) that precedes the uncued probe stimuli in discriminative response tasks and has been localized in the inferior frontal gyrus. This study aimed to characterize the pN by comparing it with the CNV in cued and uncued tasks and test if the pN could be associated with event preparation, temporal preparation, or both. To achieve these aims, high-density electroencephalographic recording and advanced ERP analysis controlling for ocular activity were obtained in 25 volunteers who performed 4 different visuomotor tasks. Our results showed that the pN amplitude was largest in the condition requiring both time and event preparation, medium in the condition requiring event preparation only, and smallest in the condition requiring temporal preparation only. We concluded that the prefrontal CNV could be associated with the pN, and this activity emerges in complex tasks requiring the anticipation of both the category and timing of the upcoming stimulus. The proposed method can be useful in BCI studies investigating the endogenous neural signatures triggered by different sensorimotor paradigms. Full article
(This article belongs to the Special Issue Real-Life Wearable EEG-Based BCI: Open Challenges)
Show Figures

Figure 1

19 pages, 6555 KiB  
Protocol
Impedance Measures for Detecting Electrical Responses during Acute Injury and Exposure of Compounds to Roots of Plants
by Robin Lewis Cooper, Matthew A. Thomas and David Nicholas McLetchie
Methods Protoc. 2022, 5(4), 56; https://doi.org/10.3390/mps5040056 - 30 Jun 2022
Cited by 4 | Viewed by 4745
Abstract
Electrical activity is widely used for assessing a plant’s response to an injury or environmental stimulus. Commonly, a differential electrode recording between silver wire leads with the reference wire connected to the soil, or a part of the plant, is used. One method [...] Read more.
Electrical activity is widely used for assessing a plant’s response to an injury or environmental stimulus. Commonly, a differential electrode recording between silver wire leads with the reference wire connected to the soil, or a part of the plant, is used. One method uses KCl-filled glass electrodes placed into the plant, similar to recording membrane/cell potentials in animal tissues. This method is more susceptible to artifacts of equipment noise and photoelectric effects than an impedance measure. An impedance measure using stainless steel wires is not as susceptible to electrically induced noises. Impedance measurements are able to detect injury in plants as well as exposure of the roots to environmental compounds (glutamate). The impedance measures were performed in 5 different plants (tomato, eggplant, pepper, liverwort, and Coleus scutellarioides), and responses to mechanical movement of the plant, as well as injury, were recorded. Monitoring electrical activity in a plant that arises in a distant plant was also demonstrated using the impedance method. The purpose of this report is to illustrate the ease in using impedance measures for monitoring electrical signals from individual plants or aggregates of plants for potentially scaling for high throughput and monitoring controlled culturing and outdoor field environments. Full article
(This article belongs to the Special Issue Methods and Protocols 2022)
Show Figures

Figure 1

19 pages, 35302 KiB  
Article
The Effect of Music Listening on EEG Functional Connectivity of Brain: A Short-Duration and Long-Duration Study
by Danyal Mahmood, Humaira Nisar, Vooi Voon Yap and Chi-Yi Tsai
Mathematics 2022, 10(3), 349; https://doi.org/10.3390/math10030349 - 24 Jan 2022
Cited by 32 | Viewed by 17156
Abstract
Music is considered a powerful brain stimulus, as listening to it can activate several brain networks. Music of different kinds and genres may have a different effect on the human brain. The goal of this study is to investigate the change in the [...] Read more.
Music is considered a powerful brain stimulus, as listening to it can activate several brain networks. Music of different kinds and genres may have a different effect on the human brain. The goal of this study is to investigate the change in the brain’s functional connectivity (FC) when music is used as a stimulus. Secondly, the effect of listening to the subject’s favorite music is compared with listening to specifically formulated relaxing music with alpha binaural beats. Finally, the effect of the duration of music listening is studied. Subjects’ electroencephalographic (EEG) signals were captured as they listened to favorite and relaxing music. After preprocessing and artifact removal, the EEG recordings were decomposed into the delta, theta, alpha, and beta frequency bands, and the grand-averaged connectivity matrices were generated using Inter-Site Phase Clustering (ISPC) for each frequency band and each type of music. Furthermore, each lobe of the brain was analyzed separately to understand the effect of music on specific regions of the brain. EEG-FC among different channels was accessed by using graph theory and Network-based Statistics (NBS). To determine the significance of the changes in brain networks after listening to music, statistical analysis was conducted using Analysis of Variance (ANOVA) and t-test. The study of listening to music for a short duration verifies that either favorite or preferred music can affect the FC of the subject and induce a relaxation state. The short duration study also verifies a significant (ANOVA and t-test: p < 0.05) effectiveness of relaxing music over favorite music to induce relaxation and alertness in the subject. In the study of long duration, it is concluded that listening to relaxing music can increase functional connectivity and connections strength in the frontal lobe of the subject. A significant increase (ANOVA and t-test: p < 0.05) in FC in alpha and theta band and a significant decrease (ANOVA and t-test: p < 0.05) in FC in beta band in the frontal and parietal lobe of the brain verifies the hypothesis that the relaxing music can help the subject to achieve relaxation, activeness, and alertness. Full article
(This article belongs to the Special Issue From Brain Science to Artificial Intelligence)
Show Figures

Figure 1

17 pages, 3718 KiB  
Article
Volitional EMG Estimation Method during Functional Electrical Stimulation by Dual-Channel Surface EMGs
by Joonyoung Jung, Dong-Woo Lee, Yong Ki Son, Bae Sun Kim and Hyung Cheol Shin
Sensors 2021, 21(23), 8015; https://doi.org/10.3390/s21238015 - 30 Nov 2021
Cited by 12 | Viewed by 4369
Abstract
We propose a novel dual-channel electromyography (EMG) spatio-temporal differential (DESTD) method that can estimate volitional electromyography (vEMG) signals during time-varying functional electrical stimulation (FES). The proposed method uses two pairs of EMG signals from the same stimulated muscle to calculate the spatio-temporal difference [...] Read more.
We propose a novel dual-channel electromyography (EMG) spatio-temporal differential (DESTD) method that can estimate volitional electromyography (vEMG) signals during time-varying functional electrical stimulation (FES). The proposed method uses two pairs of EMG signals from the same stimulated muscle to calculate the spatio-temporal difference between the signals. We performed an experimental study with five healthy participants to evaluate the vEMG signal estimation performance of the DESTD method and compare it with that of the conventional comb filter and Gram–Schmidt methods. The normalized root mean square error (NRMSE) values between the semi-simulated raw vEMG signal and vEMG signals which were estimated using the DESTD method and conventional methods, and the two-tailed t-test and analysis of variance were conducted. The results showed that under the stimulation of the gastrocnemius muscle with rapid and dynamically modulated stimulation intensity, the DESTD method had a lower NRMSE compared to the conventional methods (p < 0.01) for all stimulation intensities (maximum 5, 10, 15, and 20 mA). We demonstrated that the DESTD method could be applied to wearable EMG-controlled FES systems because it estimated vEMG signals more effectively compared to the conventional methods under dynamic FES conditions and removed unnecessary FES-induced EMG signals. Full article
(This article belongs to the Special Issue Stimuli-Responsive Flexible Sensors)
Show Figures

Figure 1

17 pages, 2339 KiB  
Article
Automated Intracellular Calcium Profiles Extraction from Endothelial Cells Using Digital Fluorescence Images
by Marcial Sanchez-Tecuatl, Ajelet Vargaz-Guadarrama, Juan Manuel Ramirez-Cortes, Pilar Gomez-Gil, Francesco Moccia and Roberto Berra-Romani
Int. J. Mol. Sci. 2018, 19(11), 3440; https://doi.org/10.3390/ijms19113440 - 2 Nov 2018
Cited by 3 | Viewed by 3314
Abstract
Endothelial cells perform a wide variety of fundamental functions for the cardiovascular system, their proliferation and migration being strongly regulated by their intracellular calcium concentration. Hence it is extremely important to carefully measure endothelial calcium signals under different stimuli. A proposal to automate [...] Read more.
Endothelial cells perform a wide variety of fundamental functions for the cardiovascular system, their proliferation and migration being strongly regulated by their intracellular calcium concentration. Hence it is extremely important to carefully measure endothelial calcium signals under different stimuli. A proposal to automate the intracellular calcium profiles extraction from fluorescence image sequences is presented. Digital image processing techniques were combined with a multi-target tracking approach supported by Kalman estimation. The system was tested with image sequences from two different stimuli. The first one was a chemical stimulus, that is, ATP, which caused small movements in the cells trajectories, thereby suggesting that the bath application of the agonist does not generate significant artifacts. The second one was a mechanical stimulus delivered by a glass microelectrode, which caused major changes in cell trajectories. The importance of the tracking block is evidenced since more accurate profiles were extracted, mainly for cells closest to the stimulated area. Two important contributions of this work are the automatic relocation of the region of interest assigned to the cells and the possibility of data extraction from big image sets in efficient and expedite way. The system may adapt to different kind of cell images and may allow the extraction of other useful features. Full article
(This article belongs to the Special Issue Calcium Signaling in Human Health and Diseases)
Show Figures

Graphical abstract

21 pages, 3039 KiB  
Article
Multifocal Electroretinography in the Presence of Temporal and Spatial Correlations and Eye Movements
by Alan B. Saul and Amber E. Still
Vision 2017, 1(1), 3; https://doi.org/10.3390/vision1010003 - 9 May 2016
Cited by 10 | Viewed by 6172
Abstract
Releasing patients from the fixation task, and permitting them to view natural stimuli such as movies, would provide increased comfort, and potentially additional signs of retinal function, when recording multifocal electroretinograms (mfERGs). Techniques must be developed to handle the difficulties that arise from [...] Read more.
Releasing patients from the fixation task, and permitting them to view natural stimuli such as movies, would provide increased comfort, and potentially additional signs of retinal function, when recording multifocal electroretinograms (mfERGs). Techniques must be developed to handle the difficulties that arise from these alternative stimulation strategies. Multifocal stimuli were presented to volunteer human subjects with and without fixation. Retinocentric analyses were performed to deal with shifts of the stimulus across the retina in the presence of eye movements. Artificial scotomas that moved with the eyes to simulate local retinal defects were presented to assess whether such defects might be detectable in the presence of eye movements. Temporal and spatial correlations in the stimulus can be discounted, permitting retinal kernels to be measured in response to natural stimuli. Responses to temporally natural stimuli tend to have slightly stronger amplitudes because of the presence of low temporal frequencies in these stimuli. The effects of eye movement artifacts can be reduced, permitting similar kernels to be obtained in the absence and presence of eye movements. Convergence to stable kernels took slightly longer in the presence of temporal correlations or eye movements. Artificial scotomas can be localized with these methods. It may be possible to perform multifocal ERG recordings in the clinic using more flexible, natural techniques. However, work is needed to achieve results comparable to those routinely obtained with conventional methods. Full article
Show Figures

Graphical abstract

10 pages, 794 KiB  
Article
Effects of Stimulus Intensity on Low-Frequency Toneburst Cochlear Microphonic Waveforms
by Ming Zhang
Audiol. Res. 2013, 3(1), e3; https://doi.org/10.4081/audiores.2013.e3 - 21 Feb 2013
Cited by 8 | Viewed by 1
Abstract
This study investigates changes in amplitude and delays in low-frequency toneburst cochlear microphonic (CM) waveforms recorded at the ear canal in response to different stimulus intensities. Ten volunteers aged 20-30 were recruited. Low-frequency CM waveforms at 500 Hz in response to a 14-ms [...] Read more.
This study investigates changes in amplitude and delays in low-frequency toneburst cochlear microphonic (CM) waveforms recorded at the ear canal in response to different stimulus intensities. Ten volunteers aged 20-30 were recruited. Low-frequency CM waveforms at 500 Hz in response to a 14-ms toneburst were recorded from an ear canal electrode using electrocochleography techniques. The data was statistically analyzed in order to confirm whether the differences were significant in the effects of stimulus intensity on the amplitudes and delays of the low-frequency CM waveforms. Electromagnetic interference artifacts can jeopardize CM measurements but such artifacts can be avoided. The CM waveforms can be recorded at the ear canal in response to a toneburst which is longer than that used in ABR measurements. The CM waveforms thus recorded are robust, and the amplitude of CM waveforms is intensity-dependent. In contrast, the delay of CM waveforms is intensity-independent, which is different from neural responses as their delay or latency is intensity-dependent. These findings may be useful for development of the application of CM measurement as a supplementary approach to otoacoustic emission (OAE) measurement in the clinic which is severely affected by background acoustic noise. The development of the application in the assessment of low-frequency cochlear function may become possible if a further series of studies can verify the feasibility, but it is not meant to be a substitute for audiometry or OAE measurements. The measurement of detection threshold of CM waveform responses using growth function approach may become possible in the clinic. The intensity-independent nature of CMs with regards to delay measurements may also become an impacting factor for differential diagnoses and for designing new research studies. Full article
Back to TopTop