Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = static bomb combustion calorimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7246 KB  
Article
Thermodynamic Properties of γ- and δ-Lactones: Exploring Alkyl Chain Length Effect and Ring-Opening Reactions for Green Chemistry Applications
by Ana L. R. Silva, Gastón P. León, Vladimír Lukeš, Erik Klein and Maria D. M. C. Ribeiro da Silva
Molecules 2025, 30(2), 399; https://doi.org/10.3390/molecules30020399 - 18 Jan 2025
Cited by 3 | Viewed by 2114
Abstract
An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both [...] Read more.
An extensive thermochemical study of γ-undecanolactone and δ-undecanolactone has been developed using two complementary calorimetric techniques. The combustion energy of each compound was determined by static-bomb combustion calorimetry, and the corresponding enthalpy of vaporization was determined by high-temperature Calvet microcalorimetry, in which both properties of each compound are reported at T = 298.15 K. The standard molar enthalpy of formation in the gas phase of each lactone was derived by the combination of the experimental results. Additionally, high-level computational calculations were carried out, using composite ab initio G4 and G4(MP2) methods, as well as DFT M06-2X/6-311++G(d,p) approach, to estimate the corresponding enthalpy of formation in the gas phase. The experimental and computational results are in good agreement. The G4 and G4(MP2) methods show the best accordance with experimentally determined gas phase enthalpies of formation. The experimental results are discussed in terms of structural contributions to the energetic properties of the lactones studied, as well as to other alkylated γ- and δ-lactones, and empirical correlations are suggested for the estimation of the standard molar enthalpies of formation, at T = 298.15 K, for other alkylated γ- and δ-lactones, both in the liquid and gaseous phases, as well as for the respective enthalpies of vaporization. Finally, the thermochemistry of individual steps of lactone ring opening and successive decarboxylation mechanism, including the identification of transition states, was studied using the M06-2X/6-311++G(d,p) approach. Full article
(This article belongs to the Special Issue Thermodynamics of Organic Materials)
Show Figures

Figure 1

14 pages, 1762 KB  
Article
Thermochemical Research on Furfurylamine and 5-Methylfurfurylamine: Experimental and Computational Insights
by Luísa M. P. F. Amaral, Ana R. R. P. Almeida and Manuel A. V. Ribeiro da Silva
Molecules 2024, 29(12), 2729; https://doi.org/10.3390/molecules29122729 - 7 Jun 2024
Cited by 3 | Viewed by 2459 | Correction
Abstract
The need to transition from fossil fuels to renewables arises from factors such as depletion, price fluctuations, and environmental considerations. Lignocellulosic biomass, being abundant, and quickly renewable, and not interfering with food supplies, offers a standout alternative for chemical production. This paper explores [...] Read more.
The need to transition from fossil fuels to renewables arises from factors such as depletion, price fluctuations, and environmental considerations. Lignocellulosic biomass, being abundant, and quickly renewable, and not interfering with food supplies, offers a standout alternative for chemical production. This paper explores the energetic characteristics of two derivatives of furfural—a versatile chemical obtained from biomass with great potential for commercial sustainable chemical and fuel production. The standard (p° = 0.1 MPa) molar enthalpies of formation of the liquids furfurylamine and 5-methylfurfurylamine were derived from the standard molar energies of combustion, determined in oxygen and at T = 298.15 K, by static bomb combustion calorimetry. Their standard molar enthalpies of vaporization were also determined at the same temperature using high-temperature Calvet microcalorimetry. By combining these data, the gas-phase enthalpies of formation at T = 298.15 K were calculated as −(43.5 ± 1.4) kJ·mol−1 for furfurylamine, and −(81.2 ± 1.7) kJ·mol−1 for 5-methylfurfurylamine. Furthermore, a theoretical analysis using G3 level calculations was performed, comparing the calculated enthalpies of formation with the experimental values to validate both results. This method has been successfully applied to similar molecules. The discussion looks into substituent effects in terms of stability and compares them with similar compounds. Full article
(This article belongs to the Special Issue Thermodynamics of Organic Materials)
Show Figures

Figure 1

17 pages, 1366 KB  
Article
Enthalpy of Formation of the Nitrogen-Rich Salt Guanidinium 5,5′-Azotetrazolate (GZT) and a Simple Approach for Estimating the Enthalpy of Formation of Energetic C, H, N, O Salts
by Ana L. R. Silva, Gastón P. León, Maria D. M. C. Ribeiro da Silva, Thomas M. Klapötke and Jelena Reinhardt
Thermo 2023, 3(4), 549-565; https://doi.org/10.3390/thermo3040033 - 5 Oct 2023
Cited by 11 | Viewed by 2971
Abstract
The discrepancy between the calculated (CBS-4M/Jenkins) and experimentally determined enthalpies of formation recently reported for the 2:1 salt TKX-50 raised the important question of whether the enthalpies of formation of other 2:1 C, H, N, O salts calculated using the CBS-4M/Jenkins method are [...] Read more.
The discrepancy between the calculated (CBS-4M/Jenkins) and experimentally determined enthalpies of formation recently reported for the 2:1 salt TKX-50 raised the important question of whether the enthalpies of formation of other 2:1 C, H, N, O salts calculated using the CBS-4M/Jenkins method are reliable values. The standard (p° = 0.1 MPa) enthalpy of formation of crystalline guanidinium 5,5′-azotetrazolate (GZT) (453.6 ± 3.2 kJ/mol) was determined experimentally using static-bomb combustion calorimetry and was found to be in good agreement with the literature’s values. However, using the CBS-4M/Jenkins method, the calculated enthalpy of formation of GZT was again in poor agreement with the experimentally determined value. The method we used recently to calculate the enthalpy of formation of TKX-50, based on the calculation of the heat of formation of the salt and of the corresponding neutral adduct, was then applied to GZT and provided excellent agreement with the experimentally determined value. Finally, in order to validate the findings, this method was also applied to predict the enthalpy of formation of a range of 1:1 and 2:1 salts (M+X and (M+)2X2− salts, respectively), and the values obtained were comparable to experimentally determined values. The agreement using this approach was generally very good for both 1:1 and 2:1 salts; therefore, this approach provides a simple and reliable method which can be applied to calculate the enthalpy of formation of energetic C, H, N, O salts with much greater accuracy than the current, commonly used method. Full article
(This article belongs to the Special Issue Feature Papers of Thermo in 2023)
Show Figures

Figure 1

9 pages, 984 KB  
Article
Thermochemical Study of 1-Methylhydantoin
by Juan M. Ledo, Henoc Flores, Fernando Ramos and Elsa A. Camarillo
Molecules 2022, 27(2), 556; https://doi.org/10.3390/molecules27020556 - 16 Jan 2022
Cited by 1 | Viewed by 2587
Abstract
Using static bomb combustion calorimetry, the combustion energy of 1-methylhydantoin was obtained, from which the standard molar enthalpy of formation of the crystalline phase at T = 298.15 K of the compound studied was calculated. Through thermogravimetry, mass loss rates were measured as [...] Read more.
Using static bomb combustion calorimetry, the combustion energy of 1-methylhydantoin was obtained, from which the standard molar enthalpy of formation of the crystalline phase at T = 298.15 K of the compound studied was calculated. Through thermogravimetry, mass loss rates were measured as a function of temperature, from which the enthalpy of vaporization was calculated. Additionally, some properties of fusion were determined by differential scanning calorimetry, such as enthalpy and temperature. Adding the enthalpy of fusion to the enthalpy of vaporization, the enthalpy of sublimation of the compound was obtained at T = 298.15 K. By combining the enthalpy of formation of the compound in crystalline phase with its enthalpy of sublimation, the respective standard molar enthalpy of formation in the gas phase was calculated. On the other hand, the results obtained in the present work were compared with those of other derivatives of hydantoin, with which the effect of the change of some substituents in the base heterocyclic ring was evaluated. Full article
Show Figures

Figure 1

8 pages, 2227 KB  
Article
Experimental and Theoretical Investigation on the Thermochemistry of 3-Methyl-2-benzoxazolinone and 6-Nitro-2-benzoxazolinone
by Ana L. R. Silva, Vânia M. S. Costa and Maria D. M. C. Ribeiro da Silva
Molecules 2022, 27(1), 24; https://doi.org/10.3390/molecules27010024 - 21 Dec 2021
Cited by 1 | Viewed by 3398
Abstract
The determination of the reliable thermodynamic properties of 2-benzoxazolinone derivatives is the main goal of this work. Some correlations are established between the energetic properties determined and the structural characteristics of the title compounds, and the reactivity of this class of compounds is [...] Read more.
The determination of the reliable thermodynamic properties of 2-benzoxazolinone derivatives is the main goal of this work. Some correlations are established between the energetic properties determined and the structural characteristics of the title compounds, and the reactivity of this class of compounds is also evaluated. Static-bomb combustion calorimetry and high-temperature Calvet microcalorimetry were used to determine, respectively, the standard molar enthalpies of formation in the solid state and the standard molar enthalpies of sublimation, both at T = 298.15 K. Using the results obtained for each compound, the respective gas-phase standard molar enthalpy of formation was derived. High-level quantum chemical calculations were performed to estimate the same property and the results evidence good accordance. Moreover, the gas-phase relative thermodynamic stability of 2-benzoxazolinone derivatives was also evaluated using the respective gas-phase standard molar Gibbs energy of formation. In addition, the relationship between the energetic and structural characteristics of the benzoxazolinones is presented, evidencing the enthalpic increments associated with the presence of a methyl and a nitro groups in the molecule, and this effect is compared with similar ones in other structurally related compounds. Full article
Show Figures

Figure 1

10 pages, 2435 KB  
Article
Energetic and Structural Studies of Two Biomass-Derived Compounds: 6- and 7-hydroxy-1-indanones
by Ana Luisa Ribeiro da Silva and Maria D. M. C. Ribeiro da Silva
Appl. Sci. 2020, 10(23), 8512; https://doi.org/10.3390/app10238512 - 28 Nov 2020
Cited by 1 | Viewed by 2536
Abstract
The energetic study of 6-hydroxy-1-indanone and 7-hydroxy-1-indanone was performed using experimental techniques and computational calculations. The enthalpies of combustion and sublimation of the two compounds were determined and allowed to derive the corresponding gas-phase standard molar enthalpies of formation. For this purpose, static-bomb [...] Read more.
The energetic study of 6-hydroxy-1-indanone and 7-hydroxy-1-indanone was performed using experimental techniques and computational calculations. The enthalpies of combustion and sublimation of the two compounds were determined and allowed to derive the corresponding gas-phase standard molar enthalpies of formation. For this purpose, static-bomb combustion calorimetry and drop-method Calvet microcalorimetry were the experimental techniques used. Further, the enthalpy of fusion of each compound was obtained from scanning differential calorimetry measurements. Additionally, the gas-phase standard molar enthalpies of formation of these compounds were calculated through high-level ab initio calculations. The computational study of the molecular structures of the indanones was carried out and two possible conformers were observed for 6-hydroxy-1-indanone. Furthermore, the energetic effects associated with the presence of one hydroxyl group as a substituent on the benzenic ring of 1-indanone were also evaluated. Both experimental and theoretical methods show that 7-hydroxy-1-indanone is thermodynamically more stable than the 6-isomer in the gaseous phase and these results provide evidence for the existence of a strong intramolecular H-bond in 7-hydroxy-1-indanone. Finally, the intramolecular proton transfer in 7-hydroxy-1-indanone has been evaluated and as expected, it is not energetically favorable. Full article
(This article belongs to the Special Issue Advances in Biomass Research and Applications)
Show Figures

Figure 1

Back to TopTop