Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = star-shaped honeycomb structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 27379 KiB  
Article
Modal Parameters Estimation of Circular Plates Manufactured by FDM Technique Using Vibrometry: A Comparative Study
by Martin Hagara, Miroslav Pástor, Pavol Lengvarský, Peter Palička and Róbert Huňady
Appl. Sci. 2024, 14(22), 10609; https://doi.org/10.3390/app142210609 - 18 Nov 2024
Viewed by 946
Abstract
This paper presents a comparative study focused on a modal parameters estimation of specimens manufactured by the FDM technique using a fixed embedded vibrometer based on the laser Doppler principle and roving hammer-impact method. Part of this paper is devoted to testing a [...] Read more.
This paper presents a comparative study focused on a modal parameters estimation of specimens manufactured by the FDM technique using a fixed embedded vibrometer based on the laser Doppler principle and roving hammer-impact method. Part of this paper is devoted to testing a fixed circular plate with a honeycomb infill pattern while varying the number of excitation points (DOFs), the number of analysis lines of fast Fourier transformation (FFT), and the locations or numbers of reference degrees of freedom (REFs). Although these parameters did not significantly affect the values found for the natural frequencies of the structure, there were changes in the estimates of the mode shapes (affected by the low number of DOFs), in the height and sharpness of the peaks of the CMIF functions (caused by the increased number of FFT lines), and in the number of identified modes (influenced by the chosen location(s) of REFs), respectively. Subsequently, the authors compared the results of experimental modal analyses carried out under the same conditions on three circular plates with honeycomb, star, and concentric infill patterns made of PLA. The results confirm that specimens with honeycomb or star infill patterns have a higher stiffness than those with concentric infill patterns. The low values of the damping ratios obtained for each structure indicate a strong response to excitation at or near their natural frequencies. Full article
Show Figures

Figure 1

19 pages, 4511 KiB  
Article
Tailoring 3D Star-Shaped Auxetic Structures for Enhanced Mechanical Performance
by Yulong Wang, Naser A. Alsaleh, Joy Djuansjah, Hany Hassanin, Mahmoud Ahmed El-Sayed and Khamis Essa
Aerospace 2024, 11(6), 428; https://doi.org/10.3390/aerospace11060428 - 24 May 2024
Cited by 3 | Viewed by 2061
Abstract
Auxetic lattice structures are three-dimensionally designed intricately repeating units with multifunctionality in three-dimensional space, especially with the emergence of additive manufacturing (AM) technologies. In aerospace applications, these structures have potential for use in high-performance lightweight components, contributing to enhanced efficiency. This paper investigates [...] Read more.
Auxetic lattice structures are three-dimensionally designed intricately repeating units with multifunctionality in three-dimensional space, especially with the emergence of additive manufacturing (AM) technologies. In aerospace applications, these structures have potential for use in high-performance lightweight components, contributing to enhanced efficiency. This paper investigates the design, numerical simulation, manufacturing, and testing of three-dimensional (3D) star-shaped lattice structures with tailored mechanical properties. Finite element analysis (FEA) was employed to examine the effect of a lattice unit’s vertex angle and strut diameter on the lattice structure’s Poisson’s ratio and effective elastic modulus. The strut diameter was altered from 0.2 to 1 mm, while the star-shaped vertex angle was adjusted from 15 to 90 degrees. Laser powder bed fusion (LPBF), an AM technique, was employed to experimentally fabricate 3D star-shaped honeycomb structures made of Ti6Al4V alloy, which were then subjected to compression testing to verify the modelling results. The effective elastic modulus was shown to decrease when increasing the vertex angle or decreasing the strut diameter, while the Poisson’s ratio had a complex behaviour depending on the geometrical characteristics of the structure. By tailoring the unit vertex angle and strut diameter, the printed structures exhibited negative, zero, and positive Poisson’s ratios, making them applicable across a wide range of aerospace components such as impact absorption systems, aircraft wings, fuselage sections, landing gear, and engine mounts. This optimization will support the growing demand for lightweight structures across the aerospace sector. Full article
Show Figures

Figure 1

14 pages, 28033 KiB  
Article
Optimizing Generative Adversarial Network (GAN) Models for Non-Pneumatic Tire Design
by Ju Yong Seong, Seung-min Ji, Dong-hyun Choi, Seungjae Lee and Sungchul Lee
Appl. Sci. 2023, 13(19), 10664; https://doi.org/10.3390/app131910664 - 25 Sep 2023
Cited by 2 | Viewed by 2312
Abstract
Pneumatic tires are used in diverse industries. However, their design is difficult, as it relies on the knowledge of experienced designers. In this paper, we generate images of non-pneumatic tire designs with patterns based on shapes and lines for different generative adversarial network [...] Read more.
Pneumatic tires are used in diverse industries. However, their design is difficult, as it relies on the knowledge of experienced designers. In this paper, we generate images of non-pneumatic tire designs with patterns based on shapes and lines for different generative adversarial network (GAN) models and test the performance of the models. Using OpenCV, 2000 training images were generated, corresponding to spoke, curve, triangle, and honeycomb non-pneumatic tires. The images created for training were used after removing highly similar images by applying mean squared error (MSE) and structural similarity index (SSIM). To identify the best model for generating patterns of regularly shaped non-pneumatic tires, GAN, deep convolutional generative adversarial network (DCGAN), StarGAN v2, StyleGAN v2-ADA, and ProjectedGAN were compared and analyzed. In the qualitative evaluation, the GAN, DCGAN, StarGAN v2, and StyleGAN v2-ADA models distorted the circle shape and did not maintain a consistent pattern, but ProjectedGAN retained consistency in the circle, and the pattern was less distorted than in the other GAN models. When evaluating quantitative metrics, ProjectedGAN performed the best among several techniques when the difference between the generated and actual image distributions was measured. Full article
(This article belongs to the Special Issue AI Applications in the Industrial Technologies)
Show Figures

Figure 1

18 pages, 10239 KiB  
Article
Investigation of the Energy Absorption Characteristics and Negative Poisson’s Ratio Effect of an Improved Star-Shaped Honeycomb
by Qianning Li, Xiaofei Cao, Xingxing Wu, Wei Chen, Chunbao Li and Xiaobin Li
J. Mar. Sci. Eng. 2023, 11(9), 1799; https://doi.org/10.3390/jmse11091799 - 15 Sep 2023
Cited by 7 | Viewed by 2141
Abstract
An improved star-shaped honeycomb (ISSH) is a kind of honeycomb structure with excellent performance. The main objective of this study was to provide some ideas for the optimization of the ISSH structure in ships. As a result, 2D-ISSH specimens were fabricated using 3D [...] Read more.
An improved star-shaped honeycomb (ISSH) is a kind of honeycomb structure with excellent performance. The main objective of this study was to provide some ideas for the optimization of the ISSH structure in ships. As a result, 2D-ISSH specimens were fabricated using 3D printing technology, and a quasistatic compression test was carried out to investigate the deformation mode and mechanical properties. The experimental results showed that the 2D-ISSH structure exhibited “V”-shaped and “-”-shaped deformation patterns with a double-platform stress stage. To further utilize the excellent performance of the structure and obtain a better negative Poisson’s ratio effect and broader application, based on the properties of the 2D-ISSH specimen, a 3D-ISSH structure was proposed and a finite element simulation was carried out. The simulation results of the 3D-ISSH structure showed different deformation patterns, including “X”- shaped and “-”-shaped patterns. According to the deformation mechanism of typical cells, the stress formula for the 3D-ISSH double platform was derived, and the theoretical results agreed well with the numerical results. The effects of the structural design, materials, and dimensions on the mechanical properties, such as the energy absorption and negative Poisson’s ratio, of the ISSH and similar structures were explored. The combined performance of various honeycombs was evaluated from multiple perspectives. Full article
(This article belongs to the Special Issue Advances in Marine Mechanical and Structural Engineering)
Show Figures

Figure 1

17 pages, 9033 KiB  
Article
Mechanics Characteristics of a 3D Star-Shaped Negative Poisson’s Ratio Composite Structure
by Linyi Yang, Mao Ye, Yonghui Huang and Jingkun Dong
Materials 2023, 16(11), 3950; https://doi.org/10.3390/ma16113950 - 25 May 2023
Cited by 22 | Viewed by 2616
Abstract
A negative Poisson’s ratio honeycomb material has the characteristics of anti-conventional deformation behavior and high impact resistance, which is a new lightweight microstructure material with broad application prospects. However, most of the current research is still at the microscopic level and two-dimensional level, [...] Read more.
A negative Poisson’s ratio honeycomb material has the characteristics of anti-conventional deformation behavior and high impact resistance, which is a new lightweight microstructure material with broad application prospects. However, most of the current research is still at the microscopic level and two-dimensional level, and little research has been carried out for three-dimensional structures. Compared with the two-dimensional level, three-dimensional negative Poisson’s ratio structural mechanics metamaterials have the advantages of a lighter mass, higher material utilization, and more stable mechanical properties, and they have great potential for development in the fields of aerospace, the defense industry, and vehicles and ships. This paper presents a novel 3D star-shaped negative Poisson’s ratio cell and composite structure, inspired by the octagon-shaped 2D negative Poisson’s ratio cell. The article carried out a model experimental study with the help of 3D printing technology and compared it with the numerical simulation results. The effects of structural form and material properties on the mechanical characteristics of 3D star-shaped negative Poisson’s ratio composite structures were investigated through a parametric analysis system. The results show that the error of the equivalent elastic modulus and the equivalent Poisson’s ratio of the 3D negative Poisson’s ratio cell and the composite structure is within 5%. The authors found that the size of the cell structure is the main factor affecting the equivalent Poisson’s ratio and the equivalent elastic modulus of the star-shaped 3D negative Poisson’s ratio composite structure. Furthermore, among the eight real materials tested, rubber exhibited the best negative Poisson’s ratio effect, while the copper alloy showed the best effect among the metal materials, with a Poisson’s ratio between −0.058 to −0.050. Full article
Show Figures

Figure 1

20 pages, 5803 KiB  
Article
The Exact Solution of the Bending Moment in the Folding Process of Negative Poisson’s Ratio Honeycomb Tape Spring and Multi-Objective Optimization Design
by Yang Yang, Fan Wang and Jieshan Liu
Aerospace 2023, 10(5), 390; https://doi.org/10.3390/aerospace10050390 - 23 Apr 2023
Cited by 7 | Viewed by 2378
Abstract
The tape spring is a crucial component used in the deployment mechanism of spacecraft, and the lightweight design of the deployment mechanism is currently one of the critical issues that need to be addressed. This paper explores the substitution effect of two different [...] Read more.
The tape spring is a crucial component used in the deployment mechanism of spacecraft, and the lightweight design of the deployment mechanism is currently one of the critical issues that need to be addressed. This paper explores the substitution effect of two different negative Poisson’s ratio honeycomb-corrugated spring structures for use in space-deployable structures. Theoretical and finite element methods demonstrated that the negative Poisson’s ratio honeycomb structure could be equivalent to an orthotropic structure. The cylindrical shell bending theory was adopted, taking into account the nonlinearity of the geometric equation, the influence of cross-sectional deformation and cross-sectional position on the internal force expression, and the influence of the geometric equation to derive expressions for the bending moment and curvature radius during the folding and bending process. Numerical methods were used for comparative analysis. The NSGA-II algorithm optimized the geometric parameters of the negative Poisson’s ratio honeycomb, resulting in the optimal solution under given constraints. The results showed that the Auxetic re-entrant honeycomb structure performed better in bending moment capacity than the Star-shaped honeycomb, and the bending moment capacity of the Auxetic re-entrant honeycomb structure per unit mass was superior to that of the traditional tape spring. Full article
Show Figures

Figure 1

19 pages, 3383 KiB  
Article
Enhanced Cellular Materials through Multiscale, Variable-Section Inner Designs: Mechanical Attributes and Neural Network Modeling
by Nikolaos Karathanasopoulos and Dimitrios C. Rodopoulos
Materials 2022, 15(10), 3581; https://doi.org/10.3390/ma15103581 - 17 May 2022
Cited by 13 | Viewed by 2740
Abstract
In the current work, the mechanical response of multiscale cellular materials with hollow variable-section inner elements is analyzed, combining experimental, numerical and machine learning techniques. At first, the effect of multiscale designs on the macroscale material attributes is quantified as a function of [...] Read more.
In the current work, the mechanical response of multiscale cellular materials with hollow variable-section inner elements is analyzed, combining experimental, numerical and machine learning techniques. At first, the effect of multiscale designs on the macroscale material attributes is quantified as a function of their inner structure. To that scope, analytical, closed-form expressions for the axial and bending inner element-scale stiffness are elaborated. The multiscale metamaterial performance is numerically probed for variable-section, multiscale honeycomb, square and re-entrant star-shaped lattice architectures. It is observed that a substantial normal, bulk and shear specific stiffness increase can be achieved, which differs depending on the upper-scale lattice pattern. Subsequently, extended mechanical datasets are created for the training of machine learning models of the metamaterial performance. Thereupon, neural network (NN) architectures and modeling parameters that can robustly capture the multiscale material response are identified. It is demonstrated that rather low-numerical-cost NN models can assess the complete set of elastic properties with substantial accuracy, providing a direct link between the underlying design parameters and the macroscale metamaterial performance. Moreover, inverse, multi-objective engineering tasks become feasible. It is shown that unified machine-learning-based representation allows for the inverse identification of the inner multiscale structural topology and base material parameters that optimally meet multiple macroscale performance objectives, coupling the NN metamaterial models with genetic algorithm-based optimization schemes. Full article
Show Figures

Figure 1

18 pages, 6190 KiB  
Article
Extremely Non-Auxetic Behavior of a Typical Auxetic Microstructure Due to Its Material Properties
by Mikołaj Bilski, Krzysztof W. Wojciechowski, Tomasz Stręk, Przemysław Kędziora, James N. Grima-Cornish and Mirosław R. Dudek
Materials 2021, 14(24), 7837; https://doi.org/10.3390/ma14247837 - 17 Dec 2021
Cited by 30 | Viewed by 2458
Abstract
The re-entrant honeycomb microstructure is one of the most famous, typical examples of an auxetic structure. The re-entrant geometries also include other members as, among others, the star re-entrant geometries with various symmetries. In this paper, we focus on one of them, having [...] Read more.
The re-entrant honeycomb microstructure is one of the most famous, typical examples of an auxetic structure. The re-entrant geometries also include other members as, among others, the star re-entrant geometries with various symmetries. In this paper, we focus on one of them, having a 6-fold symmetry axis. The investigated systems consist of binary hard discs (two-dimensional particles with two slightly different sizes, interacting through infinitely repulsive pairwise potential), from which different structures, based on the mentioned geometry, were formed. To study the elastic properties of the systems, computer simulations using the Monte Carlo method in isobaric-isothermal ensemble with varying shape of the periodic box were performed. The results show that all the considered systems are isotropic and not auxetic—their Poisson’s ratio is positive in each case. Moreover, Poisson’s ratios of the majority of examined structures tend to +1 with increasing pressure, which is the upper limit for two-dimensional isotropic media, thus they can be recognized as the ideal non-auxetics in appropriate thermodynamic conditions. The results obtained contradict the common belief that the unique properties of metamaterials result solely from their microstructure and indicate that the material itself can be crucial. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

14 pages, 5103 KiB  
Article
Fabrication of Pore-Selective Metal-Nanoparticle-Functionalized Honeycomb Films via the Breath Figure Accompanied by In Situ Reduction
by Yongjiang Li, Xiaoyan Ma, Jingyu Ma, Zongwu Zhang, Zhaoqi Niu and Fang Chen
Polymers 2021, 13(3), 316; https://doi.org/10.3390/polym13030316 - 20 Jan 2021
Cited by 11 | Viewed by 3104
Abstract
Honeycomb films pore-filled with metal (Au, Ag, and Cu) nanoparticles were successfully prepared by combining the breath figure method and an in situ reduction reaction. First, a polyhedral oligomeric silsesquioxane (POSS)-based star-shaped polymer solution containing metal salt was cast under humid conditions for [...] Read more.
Honeycomb films pore-filled with metal (Au, Ag, and Cu) nanoparticles were successfully prepared by combining the breath figure method and an in situ reduction reaction. First, a polyhedral oligomeric silsesquioxane (POSS)-based star-shaped polymer solution containing metal salt was cast under humid conditions for the formation of honeycomb films pore-filled with metal salt through the breath figure method. The morphology of the honeycomb films was mainly affected by the polymer molecular structure and the metal salt. Interestingly, the promoting effect of the metal salt in the breath figure process was also observed. Then, honeycomb films pore-filled with metal nanoparticles were obtained by in situ reduction of the honeycomb films pore-filled with metal salt using NaBH4. Notably, the metal nanoparticles can be selectively functionalized in the pores or on the surface of the honeycomb films by controlling the concentration of the NaBH4. Metal-nanoparticle-functionalized honeycomb films can prospectively be used in catalysis, flexible electrodes, surface-enhanced Raman spectroscopy (SERS), and wettability patterned surfaces. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

11 pages, 10409 KiB  
Article
Elastic Wave Propagation of Two-Dimensional Metamaterials Composed of Auxetic Star-Shaped Honeycomb Structures
by Shu-Yeh Chang, Chung-De Chen, Jia-Yi Yeh and Lien-Wen Chen
Crystals 2019, 9(3), 121; https://doi.org/10.3390/cryst9030121 - 26 Feb 2019
Cited by 27 | Viewed by 5519
Abstract
In this paper, the wave propagation in phononic crystal composed of auxetic star-shaped honeycomb matrix with negative Poisson’s ratio is presented. Two types of inclusions with circular and rectangular cross sections are considered and the band structures of the phononic crystals are also [...] Read more.
In this paper, the wave propagation in phononic crystal composed of auxetic star-shaped honeycomb matrix with negative Poisson’s ratio is presented. Two types of inclusions with circular and rectangular cross sections are considered and the band structures of the phononic crystals are also obtained by the finite element method. The band structure of the phononic crystal is affected significantly by the auxeticity of the star-shaped honeycomb. Some other interesting findings are also presented, such as the negative refraction and the self-collimation. The present study demonstrates the potential applications of the star-shaped honeycomb in phononic crystals, such as vibration isolation and the elastic waveguide. Full article
(This article belongs to the Special Issue Sonic and Photonic Crystals)
Show Figures

Figure 1

Back to TopTop