Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = stacked weld

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6098 KiB  
Article
Performance Optimization of Stacked Weld in Hydrogen Production Reactor Based on Response Surface Methodology–Genetic Algorithm
by Yu Liu, Hongtao Gu, Jincheng Zhang, Zhiyi Leng, Ziguang Wang and Shengfang Zhang
Coatings 2025, 15(8), 889; https://doi.org/10.3390/coatings15080889 - 31 Jul 2025
Viewed by 561
Abstract
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials [...] Read more.
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials to enhance weld performance. Given the varying performance requirements of different weld layers in the stacked weld, a gradient performance optimization method for the stacked weld of hydrogen production reactors based on the response surface methodology (RSM)–genetic algorithm (GA) is proposed. Using tensile strength, the hydrogen embrittlement sensitivity index, fatigue strain strength, creep rate and weld performance evaluation indices, a high-precision regression model for Si and Mo contents and weld performance indices was established through RSM and analysis of variance (ANOVA). A multi-objective optimization mathematical model for gradient improvement of the stacked weld was also established. This model was solved using a GA to obtain the optimal element content combination added to the welding wire and the optimal weld thickness for each weld layer. Finally, submerged arc welding experiments of the stacked weld were conducted according to the optimization results. The results show that the tensile strength of the base layer, filling layer and cover layer of the stacked weld increased by 5.60%, 6.16% and 4.53%, respectively. Hydrogen embrittlement resistance increased by 70.56%, 52.40% and 45.16%, respectively. The fatigue and creep resistance were also improved. The experimental results validate the feasibility and accuracy of the proposed optimization method. Full article
Show Figures

Figure 1

25 pages, 9151 KiB  
Article
Numerical Simulation and Metal Fluidity Analysis of Refill Friction Stir Spot Welding Based on 6061 Aluminum Alloy
by Di Jiang, Igor Kolupaev, Hongfeng Wang and Xiaole Ge
Crystals 2025, 15(6), 555; https://doi.org/10.3390/cryst15060555 - 10 Jun 2025
Viewed by 1031
Abstract
Simulation analysis is a key technical means for studying the internal metal flow patterns in refill friction stir spot welding zones. This study used DeformV11.0 software to establish an accurate and reliable numerical simulation model for 6061-T6 aluminum alloy refill friction stir spot [...] Read more.
Simulation analysis is a key technical means for studying the internal metal flow patterns in refill friction stir spot welding zones. This study used DeformV11.0 software to establish an accurate and reliable numerical simulation model for 6061-T6 aluminum alloy refill friction stir spot welding. The microstructure of different stages during actual welding was obtained using the stop method, and combined with the simulation results, shows that the temperature in the spot welding zone is highest during the dwell stage, with a high degree of match between the temperature distribution and actual measurements. This stage is also crucial for affecting the refill process. The results indicate that the metal flow rate in the center of the spot welding zone is slow and the pressure is low, while the flow rate on both sides is fast, and the temperature and pressure are high. In addition, the metal in the weld zone flows plastically in a shear friction and in situ spinning manner, and the weld zone achieves connection in a form similar to “complete friction plug riveting”. A “spiral suction–refill injection layer stacking” model was established to describe the forming mechanism of refill friction stir spot welding. Full article
Show Figures

Figure 1

31 pages, 7884 KiB  
Article
Magnetic Pulse Welding of Dissimilar Materials: Weldability Window for AA6082-T6/HC420LA Stacks
by Mario A. Renderos Cartagena, Edurne Iriondo Plaza, Amaia Torregaray Larruscain, Marie B. Touzet-Cortina and Franck A. Girot Mata
Metals 2025, 15(6), 619; https://doi.org/10.3390/met15060619 - 30 May 2025
Viewed by 748
Abstract
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the [...] Read more.
Magnetic pulse welding (MPW) is a promising solid-state joining process that utilizes electromagnetic forces to create high-speed, impact-like collisions between two metal components. This welding technique is widely known for its ability to join dissimilar metals, including aluminum, steel, and copper, without the need for additional filler materials or fluxes. MPW offers several advantages, such as minimal heat input, no distortion or warping, and excellent joint strength and integrity. The process is highly efficient, with welding times typically ranging from microseconds to milliseconds, making it suitable for high-volume production applications in sectors including automotive, aerospace, electronics, and various other industries where strong and reliable joints are required. It provides a cost-effective solution for joining lightweight materials, reducing weight and improving fuel efficiency in transportation systems. This contribution concerns an application for the automotive sector (body-in-white) and specifically examines the welding of AA6082-T6 aluminum alloy with HC420LA cold-rolled micro-alloyed steel. One of the main aspects for MPW optimization is the determination of the process window that does not depend on the equipment used but rather on the parameters associated with the physical mechanisms of the process. It was demonstrated that process windows based on contact angle versus output voltage diagrams can be of interest for production use for a given component (shock absorbers, suspension struts, chassis components, instrument panel beams, next-generation crash boxes, etc.). The process window based on impact pressures versus impact velocity for different impact angles, in addition to not depending on the equipment, allows highlighting other factors such as the pressure welding threshold for different temperatures in the impact zone, critical transition speeds for straight or wavy interface formation, and the jetting/no jetting effect transition. Experimental results demonstrated that optimal welding conditions are achieved with impact velocities between 900 and 1200 m/s, impact pressures of 3000–4000 MPa, and impact angles ranging from 18–35°. These conditions correspond to optimal technological parameters including gaps of 1.5–2 mm and output voltages between 7.5 and 8.5 kV. Successful welds require mean energy values above 20 kJ and weld specific energy values exceeding 150 kJ/m2. The study establishes critical failure thresholds: welds consistently failed when gap distances exceeded 3 mm, output voltage dropped below 5.5 kV, or impact pressures fell below 2000 MPa. To determine these impact parameters, relationships based on Buckingham’s π theorem provide a viable solution closely aligned with experimental reality. Additionally, shear tests were conducted to determine weld cohesion, enabling the integration of mechanical resistance isovalues into the process window. The findings reveal an inverse relationship between impact angle and weld specific energy, with higher impact velocities producing thicker intermetallic compounds (IMCs), emphasizing the need for careful parameter optimization to balance weld strength and IMC formation. Full article
(This article belongs to the Topic Welding Experiment and Simulation)
Show Figures

Figure 1

12 pages, 5414 KiB  
Article
Effect of Heat Treatment on Tensile Properties of Deposited Metal from a New Nitrogen-Containing Nickel-Based Flux-Cored Welding Wire
by Yingdi Wang, Yunhai Su and Yingdong Wang
Crystals 2025, 15(6), 509; https://doi.org/10.3390/cryst15060509 - 26 May 2025
Viewed by 304
Abstract
This study uses a new type of nitrogen-containing nickel-based flux-cored welding wire to study the microstructure and tensile properties of the deposited metal at 600 –700 °C. The results indicate that the precipitation phases of deposited metal mainly include the M (C, N) [...] Read more.
This study uses a new type of nitrogen-containing nickel-based flux-cored welding wire to study the microstructure and tensile properties of the deposited metal at 600 –700 °C. The results indicate that the precipitation phases of deposited metal mainly include the M (C, N) phase, Laves phase, and γ′ phase. After solution and aging treatment, the Laves phase remelts into the substrate. Nano-sized M (C, N) phase particles precipitate inside the grains, while the M23C6 phase forms at the grain boundaries. When stretched at 600 °C, the main deformation mechanism of the as-welded specimen is the cutting of precipitated phases by a/2<110> unit dislocations. The ultimate tensile strength of the heat-treated sample is much higher than that of the as-welded sample, but the ductility is reduced. The deformation mechanism involves not only the a/2<110>matrix dislocation cutting precipitation phase, but also two a/6<121>incomplete dislocation cutting precipitation phases together to form stacked dislocations. When stretched at 700 °C, dislocation loops appeared in the SA sample, indicating that the dislocation bypass mechanism had been activated. The tensile deformation mechanism of the deposited metal achieved a transition from dislocation cutting precipitated phases to dislocation bypassing precipitated phases. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

15 pages, 10794 KiB  
Article
Detection of Welding Defects Tracked by YOLOv4 Algorithm
by Yunxia Chen and Yan Wu
Appl. Sci. 2025, 15(4), 2026; https://doi.org/10.3390/app15042026 - 14 Feb 2025
Cited by 2 | Viewed by 756
Abstract
The recall rate of the original YOLOv4 model for detecting internal defects in aluminum alloy welds is relatively low. To address this issue, this paper introduces an enhanced model, YOLOv4-cs1. The improvements include optimizing the stacking method of residual blocks, modifying the activation [...] Read more.
The recall rate of the original YOLOv4 model for detecting internal defects in aluminum alloy welds is relatively low. To address this issue, this paper introduces an enhanced model, YOLOv4-cs1. The improvements include optimizing the stacking method of residual blocks, modifying the activation functions for different convolutional layers, and eliminating the downsampling layer in the PANet (Pyramid Attention Network) to preserve edge information. Building on these enhancements, the YOLOv4-cs2 model further incorporates an improved Spatial Pyramid Pooling (SPP) module after the third and fourth residual blocks. The experimental results demonstrate that the recall rates for pore and slag inclusion detection using the YOLOv4-cs1 and YOLOv4-cs2 models increased by 28.9% and 16.6%, and 45% and 25.2%, respectively, compared to the original YOLOv4 model. Additionally, the mAP values for the two models are 85.79% and 87.5%, representing increases of 0.98% and 2.69%, respectively, over the original YOLOv4 model. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

14 pages, 4320 KiB  
Article
Influence of Heat Treatment on the Microstructure and Tensile Properties of a Novel Nitrogenous Nickel-Based Deposited Metal
by Yingdi Wang, Zhiyong Dai and Yunhai Su
Crystals 2024, 14(11), 946; https://doi.org/10.3390/cryst14110946 - 30 Oct 2024
Cited by 1 | Viewed by 842
Abstract
Nitrogenous nickel-based deposited metal was prepared by using the gas metal arc welding (GMAW) method, and it was further subjected to solid-solution and aging heat treatment. The influence of different solid-solution temperatures on the microstructure of the deposited metal was studied, and the [...] Read more.
Nitrogenous nickel-based deposited metal was prepared by using the gas metal arc welding (GMAW) method, and it was further subjected to solid-solution and aging heat treatment. The influence of different solid-solution temperatures on the microstructure of the deposited metal was studied, and the complete heat treatment system for the nitrogenous nickel-based deposited metal was ultimately determined. The microstructure, mechanical properties, and deformation mechanism of the nitrogenous nickel-based deposited metal in two states (as-prepared state and complete heat-treated state) were finally investigated. The results show that the microstructure of the deposited metal mainly consisted of epitaxially grown columnar grains with large grains. Petal-like Laves phases formed between the dendrites. The main deformation mechanism was the unit dislocation a/2<110> cut precipitation phase. After a complete heat treatment, all the Laves phases were re-melted, and nanoscale M(C,N) phases precipitated in the grains, while M23C6 phases formed at the grain boundaries. The samples showed higher yield and ultimate tensile strengths than those of the as-prepared state metal, but with reduced ductility. The deformation mechanism involved not only a/2<110> matrix dislocations cutting the precipitated phase, but also two a/6<121> Shockley incomplete dislocations, together cutting the precipitated phase to form a stacking layer dislocation. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

14 pages, 7436 KiB  
Article
Effect of Solution and Aging Heat Treatment on the Microstructure and Mechanical Properties of Inconel 625 Deposited Metal
by Yingdi Wang, Yunhai Su and Zhiyong Dai
Crystals 2024, 14(9), 764; https://doi.org/10.3390/cryst14090764 - 28 Aug 2024
Cited by 1 | Viewed by 1676
Abstract
Inconel 625 deposited metal was prepared by gas metal arc welding. The solid solution treatment temperature was set at 1140 °C for 4 h using the DSC test method, followed by secondary aging at 750 °C/4 h and 650 °C/24 h. The specimens [...] Read more.
Inconel 625 deposited metal was prepared by gas metal arc welding. The solid solution treatment temperature was set at 1140 °C for 4 h using the DSC test method, followed by secondary aging at 750 °C/4 h and 650 °C/24 h. The specimens in the prepared state and after heat treatment were subjected to high temperature tensile at 600 °C, respectively. The fracture morphology, thermal deformation behavior, and strengthening mechanism of the samples in different states were analyzed. The results showed that the stress–strain curves of the deposited metals exhibited obvious work-hardening behavior at 600 °C. The solid solution and aging heat-treated samples have higher tensile and yield strength, but the plasticity is obviously lower than that of the deposited metal. It was also found that the γ″ phase and M23C6 carbides, as well as the continuous stacking faults in the alloy, were the main reasons for the increase in tensile strength of the solution and aging heat-treated sample. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

18 pages, 5304 KiB  
Article
Enhanced Strength–Ductility Combination in Laser Welding of CrCoNi Medium-Entropy Alloy with Ultrasonic Assistance
by Hongmei Zhou, Shaohua Yan and Zhongyin Zhu
Metals 2024, 14(9), 971; https://doi.org/10.3390/met14090971 - 27 Aug 2024
Cited by 2 | Viewed by 1090
Abstract
The welded joints of high/medium entropy alloys (H/MEAs) have shown sound mechanical properties, indicating high promise for the industrial application of this new type of metal alloy. However, these joints possess either relatively low strength or low ductility. In this paper, we used [...] Read more.
The welded joints of high/medium entropy alloys (H/MEAs) have shown sound mechanical properties, indicating high promise for the industrial application of this new type of metal alloy. However, these joints possess either relatively low strength or low ductility. In this paper, we used ultrasonic-assisted laser welding to weld CrCoNi MEA with the nitrogen as shielding gas. The results showed that the tensile strength of the joint at room and cryogenic temperature is 686 MPa and 1071 MPa, respectively. The elongation at room and cryogenic temperature is 26.8% and 27.7%, respectively. The combination of the strength and ductility in our joints exceeds that of other welded H/MEA joints. We attributed this excellent combination to the refined dendrite, the solution of nitrogen into the matrix, and the low stacking fault energy of the CrCoNi MEA. The findings in this paper not only provide a novel way to weld H/MEAs with high strength and ductility, also are useful for additively manufacturing the high-performance component of H/MEAs. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

18 pages, 13986 KiB  
Article
Microstructure and Properties of Mg-Gd-Y-Zn-Mn High-Strength Alloy Welded by Friction Stir Welding
by Jinxing Wang, Zhicheng Wan, Xiyu Wang, Jiaxu Wang, Yi Zou, Jingfeng Wang and Fusheng Pan
Materials 2024, 17(17), 4190; https://doi.org/10.3390/ma17174190 - 24 Aug 2024
Viewed by 1479
Abstract
Mg-Gd-Y-Zn-Mn (MVWZ842) is a kind of high rare earth magnesium alloy with high strength, high toughness and multi-scale strengthening mechanisms. After heat treatment, the maximum tensile strength of MVWZ842 alloy is more than 550 MPa, and the elongation is more than 5%. Because [...] Read more.
Mg-Gd-Y-Zn-Mn (MVWZ842) is a kind of high rare earth magnesium alloy with high strength, high toughness and multi-scale strengthening mechanisms. After heat treatment, the maximum tensile strength of MVWZ842 alloy is more than 550 MPa, and the elongation is more than 5%. Because of its great mechanical properties, MVWZ842 has broad application potential in aerospace and rail transit. However, the addition of high rare earth elements makes the deformation resistance of MVWZ842 alloy increase to some extent. This leads to the difficulty of direct plastic processing forming and large structural part shaping. Friction stir welding (FSW) is a convenient fast solid-state joining technology. When FSW is used to weld MVWZ842 alloy, small workpieces can be joined into a large one to avoid the problem that large workpieces are difficult to form. In this work, a high-quality joint of MVWZ842 alloy was achieved by FSW. The microstructure and properties of this high-strength magnesium alloy after friction stir welding were studied. There was a prominent onion ring characteristic in the nugget zone. After the base was welded, the stacking fault structure precipitated in the grain. There were a lot of broken long period stacking order (LPSO) phases on the retreating side of the nugget zone, which brought the effect of precipitation strengthening. Nano-α-Mn and the broken second phase dispersed in the matrix in the nugget zone, which made the grains refine. A relatively complete dynamic recrystallization occurred in the nugget zone, and the grains were refined. The welding coefficient of the welded joint exceeded 95%, and the hardness of the weld nugget zone was higher than that of the base. There were a series of strengthening mechanisms in the joint, mainly fine grain strengthening, second phase strengthening and solid solution strengthening. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys)
Show Figures

Figure 1

18 pages, 5957 KiB  
Article
Temperature Effect on Deformation Mechanisms and Mechanical Properties of Welded High-Mn Steels for Cryogenic Applications
by Minha Park, Gang Ho Lee, Geon-Woo Park, Gwangjoo Jang, Hyoung-Chan Kim, Sanghoon Noh, Jong Bae Jeon, Byoungkoo Kim and Byung Jun Kim
Materials 2024, 17(16), 4159; https://doi.org/10.3390/ma17164159 - 22 Aug 2024
Cited by 1 | Viewed by 1402
Abstract
High-manganese steel (high-Mn) is valuable for its excellent mechanical properties in cryogenic environments, making it essential to understand its deformation behavior at extremely low temperatures. The deformation behavior of high-Mn steels at extremely low temperatures depends on the stacking fault energy (SFE) that [...] Read more.
High-manganese steel (high-Mn) is valuable for its excellent mechanical properties in cryogenic environments, making it essential to understand its deformation behavior at extremely low temperatures. The deformation behavior of high-Mn steels at extremely low temperatures depends on the stacking fault energy (SFE) that can lead to the formation of deformation twins or transform to ε-martensite or α′-martensite as the temperature decreases. In this study, submerged arc welding (SAW) was applied to fabricate thick pipes for cryogenic industry applications, but it may cause problems such as an uneven distribution of manganese (Mn) and a large weldment. To address these issues, post-weld heat treatment (PWHT) is performed to achieve a homogeneous microstructure, enhance mechanical properties, and reduce residual stress. It was found that the difference in Mn content between the dendrite and interdendritic regions was reduced after PWHT, and the SFE was calculated. At cryogenic temperatures, the SFE decreased below 20 mJ/m2, indicating the martensitic transformation region. Furthermore, an examination of the deformation behavior of welded high-Mn steels was conducted. This study revealed that the tensile deformed, as-welded specimens exhibited ε and α′-martensite transformations at cryogenic temperatures. However, the heat-treated specimens did not undergo α′-martensite transformations. Moreover, regardless of whether the specimens were subjected to Charpy impact deformation before or after heat treatment, ε and α′-martensite transformations did not occur. Full article
(This article belongs to the Special Issue Advances in Solid-State Welding Processes)
Show Figures

Figure 1

47 pages, 10769 KiB  
Article
Design of a Trailer Adapted for Accommodation and Transport of Beehives
by Eduardo Garzón, Vanesa García-Garzón, Javier Pascual García and Pedro Jose Sánchez-Soto
Designs 2024, 8(4), 82; https://doi.org/10.3390/designs8040082 - 20 Aug 2024
Viewed by 1001
Abstract
There is relevant interest concerning beehives, taking into account climate change and its influence on bees’ behavior. A part of the industrial engineering sector is focusing on beekeeping applications. More specifically, the present study aims to develop a trailer for the transport of [...] Read more.
There is relevant interest concerning beehives, taking into account climate change and its influence on bees’ behavior. A part of the industrial engineering sector is focusing on beekeeping applications. More specifically, the present study aims to develop a trailer for the transport of beehives adapted to be placed or fixed to a tractor or a vehicle trailer, with the objective of transporting the beehives safely and stably during transhumance. The proposed novel design relates to a trailer that incorporates a device for housing a rectangular section of the beehives, which can be adapted for fixing or housing in a vehicle or in a vehicle trailer. The device comprises a lower support structure, adapted to support a plurality of rectangular sections of beehives stacked horizontally on the lower structure, an upper frame adapted to house the beehives inside, and two or more connecting elements between the lower structure and the upper frame. The connection of the trailer with the device facilitates the loading and unloading of the beehives by mechanical means. The different parts have been designed as individual pieces and then assembly is carried out to achieve the complete design. This method of implementation is because the simulation of individual components is simpler and easier, since if it is carried out through assembly, the type of joint, such as welding, and the length of the weld would have to be indicated at each point of contact between components, along with its thickness and all the necessary parameters. Therefore, in those welding points, fixed fastenings are indicated and so will simplify it. In accordance with the individual creation of each part, its own load simulation has been carried out. Static analyses are performed taking into account structural elements of this proposed design, with restrictions and loads being established. The analysis, including upper bars and supports, has been completed with several situations. Based on stress values, deformations have been determined and calculations evaluated. The trays have been manufactured using flat steel bars and angled bars for the legs and support of the hives. Full article
Show Figures

Figure 1

15 pages, 7891 KiB  
Article
Influential Factors on Diffusion Bonding Strength as Demonstrated by Bonded Multi-Layered Stainless Steel 316L and 430 Stack
by Da-Wei Liu, Chun-Nan Lin, Wei-Shuai Lin, Shyong Lee and Jyh Gwo
Materials 2024, 17(15), 3713; https://doi.org/10.3390/ma17153713 - 27 Jul 2024
Viewed by 1549
Abstract
In this study, we optimized the parameters of diffusion bonding on multi-layered stainless steel 316L and 430 stacks. The preparation process for diffusion bonding is crucial, as the bonding surfaces need to be polished and meticulously cleaned to ensure a smooth bonding process. [...] Read more.
In this study, we optimized the parameters of diffusion bonding on multi-layered stainless steel 316L and 430 stacks. The preparation process for diffusion bonding is crucial, as the bonding surfaces need to be polished and meticulously cleaned to ensure a smooth bonding process. We fabricated twelve-layer plates consisting of 55 mm × 55 mm × 3 mm and 100 mm × 50 mm × 3 mm dimensions, and the bonding response was investigated by evaluating the tensile strength of the bonding zone under varying bonding conditions, with a bonding temperature ranging from 1000 to 1048 °C, a bond time ranging from 15 to 60 min, pressure ranging from 10 to 25.3 MPa, and under a vacuum environment. SS430 exhibits a significantly higher compression creep rate than SS316L. The compressibility of diffusion welding materials does not impact the diffusion bonding strength. Multi-axial tensile strength tests confirmed strong bonding joint strength in various axes. The tensile strengths of monolithic and Diffusion bonding (DB) specimens tested in parallel are essentially identical. The optimized diffusion bonding parameters (Condition G2C: 1048 °C/25.3 MPa/15 min) are ideal for producing SS316L stainless steel cores in compact heat exchangers, offering a superior bonding quality and reduced costs. These findings have practical implications for the production of stainless steel cores in compact heat exchangers, demonstrating the relevance and applicability of our research. Full article
(This article belongs to the Special Issue Recent Research on Superplastic Forming of Metals and Alloys)
Show Figures

Figure 1

14 pages, 3104 KiB  
Article
Introduction of the Experimental Setup for the Investigation of the Novel Selective Melt Dispersion (SMD): A Directed Energy Deposition (DED) Process
by Sebastian F. Noller, Anja Pfennig and Matthias Dahlmeyer
Clean Technol. 2024, 6(2), 572-585; https://doi.org/10.3390/cleantechnol6020030 - 7 May 2024
Cited by 1 | Viewed by 1355
Abstract
This study focuses on developing an experimental setup to investigate the Selective Melt Dispersion (SMD), a Directed Energy Deposition (DED) process. SMD as a means of in-process joining (IPJ) aims to integrate components and assemblies during additive manufacturing, combining the advantages of various [...] Read more.
This study focuses on developing an experimental setup to investigate the Selective Melt Dispersion (SMD), a Directed Energy Deposition (DED) process. SMD as a means of in-process joining (IPJ) aims to integrate components and assemblies during additive manufacturing, combining the advantages of various processes for eco-friendly and economical resource utilization. The research initially analyzed DED systems and defined requirements for subsystems and the overall system. Critical subsystems, including the energy source, material feed, and others, were sequentially developed, and a proof of concept involved building 20 stacked welded tracks, validated through micrograph analysis. The study concludes by evaluating and discussing the fulfillment of the defined requirements. The system comprises a centrally arranged vibration-assisted powder feed; a laterally arranged laser incidence at a 45° angle; a kinematic structure where all axes are arranged on the workpiece, so the powder supply does not require movement; and a shield gas supply. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment)
Show Figures

Figure 1

13 pages, 6236 KiB  
Article
Microstructural Investigations of Weld Deposits from Manganese Austenitic Alloy on X2CrNiMoN22-5-3 Duplex Stainless Steel
by Ion Mitelea, Daniel Mutașcu, Olimpiu Karancsi, Corneliu Marius Crăciunescu, Dragoș Buzdugan and Ion-Dragoș Uțu
Appl. Sci. 2024, 14(9), 3751; https://doi.org/10.3390/app14093751 - 27 Apr 2024
Cited by 1 | Viewed by 1704
Abstract
Duplex stainless steels are materials with high performance under mechanical stress and stress corrosion in chloride ion environments. Despite being used in many new applications such as components for offshore drilling platforms as well as in the chemical and petrochemical industry, the automotive [...] Read more.
Duplex stainless steels are materials with high performance under mechanical stress and stress corrosion in chloride ion environments. Despite being used in many new applications such as components for offshore drilling platforms as well as in the chemical and petrochemical industry, the automotive industry, etc., they face issues of wear and hardness that limit current applications and prevent the creation of new use opportunities. To address these shortcomings, it is proposed to develop a hardfacing process by a special welding technique using a universal TIG source adapted for manual welding with a pulsed current, and a manganese austenitic alloy electrode as filler material. The opportunity to deposit layers of manganese austenitic steel through welding creates advantages related to the possibility of achieving high mechanical characteristics of this steel exclusively in the working area of the part, while the substrate material will not undergo significant changes in chemical composition. As a result of the high strain hardening rate, assisted mainly by mechanical twinning, manganese austenitic alloys having a face-centered cubic crystal lattice (f.c.c) and low stacking fault energy (SFE = 20–40 mJ/m2) at room temperature, exhibit high wear resistance and exceptional toughness. Following cold deformation, the hardness of the deposited metal increases to 465 HV5–490 HV5. The microstructural characteristics were investigated through optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and Vickers hardness measurements (HV). The obtained results highlighted the feasibility of forming hard coatings on duplex stainless steel substrates. Full article
Show Figures

Figure 1

14 pages, 12767 KiB  
Article
Effects of Process Parameters on the Microstructure and Mechanical Properties of Large PE Pipe via Polymer Melt Jetting Stacking
by Shenglin Wu, Wei Zhang and Yafeng Zhu
Processes 2023, 11(8), 2384; https://doi.org/10.3390/pr11082384 - 8 Aug 2023
Cited by 1 | Viewed by 1925
Abstract
The conventional methods for producing large-diameter pipes, such as extrusion and winding fusion welding, suffer from various drawbacks including difficulties in forming, complex molds, and high costs. Moreover, the flexibility and production efficiency of traditional manufacturing processes are relatively low. To address these [...] Read more.
The conventional methods for producing large-diameter pipes, such as extrusion and winding fusion welding, suffer from various drawbacks including difficulties in forming, complex molds, and high costs. Moreover, the flexibility and production efficiency of traditional manufacturing processes are relatively low. To address these challenges, this study proposes a new manufacturing process for polymer melt jetting and stacking based on fused deposition modeling (FDM) and rolling forming principles. This innovative approach aims to overcome the limitations of conventional methods and improve the flexibility and production efficiency in large-diameter pipe manufacturing. In the polymer melt jetting and stacking process, a plastic melt with a specific temperature and pressure is extruded by an extruder. The melt is then injected through the nozzle embedded in the previous layer of the pipe blank. By utilizing the localized rolling action of the forming device and adjusting the diameter using a diameter adjustment device, the newly injected plastic melt bonds with the previous layer of the pipe blank. Finally, the continuous large-diameter plastic pipe is formed through cooling and solidification. Experimental investigations demonstrate that the polymer melt jetting and stacking process can produce pipes with diameters ranging from 780 mm to 850 mm and thicknesses of 20 mm to 25 mm. The radial tensile strength, impact strength, and microstructural orientation of the produced pipes exhibit superior performance compared to those in the axial direction. Additionally, process parameters such as rolling speed, cooling temperature, melt extrusion speed, and tractive velocity significantly influence the microstructure and mechanical properties of the pipes. Full article
Show Figures

Figure 1

Back to TopTop