Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = stacked composite–metal drilling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4227 KB  
Article
Influence of Drill Geometry on Adhesion Layer Formation and Tool Wear During Drilling of AFRP/Al7075-T6 Stacked Composites for Aircraft Industry Applications
by Jebaratnam Joy Mathavan, Choo Then Xiang, Muhammad Hafiz Hassan and Gérald Franz
J. Compos. Sci. 2025, 9(12), 658; https://doi.org/10.3390/jcs9120658 - 1 Dec 2025
Viewed by 413
Abstract
Aramid Fiber Reinforced Plastic (AFRP) and aluminum alloy Al7075-T6 are widely used in the aerospace industry because they offer a high strength-to-weight ratio and reliable structural performance. However, drilling through stacked AFRP and Al7075-T6 materials in a single operation presents considerable challenges due [...] Read more.
Aramid Fiber Reinforced Plastic (AFRP) and aluminum alloy Al7075-T6 are widely used in the aerospace industry because they offer a high strength-to-weight ratio and reliable structural performance. However, drilling through stacked AFRP and Al7075-T6 materials in a single operation presents considerable challenges due to the differences in their mechanical and thermal properties. In this study, three types of customized twist drill bits were designed and fabricated to evaluate their effectiveness in single-shot drilling of these stacked materials. The drill geometries included the W-point design, the tapered web design, and the burnishing design. Each drill bit was tested using its own optimized drilling parameters to produce a total of one hundred holes. The aim was to determine which drill geometry provided the best overall performance in terms of tool wear and hole quality. After the drilling experiments, the tool tips were examined using a Scanning Electron Microscope (SEM) to observe wear characteristics and analyze elemental composition. The analysis revealed that aluminum adhered to the cutting lips of all drill bits. The percentage of adhesion layer, known as percentage of adhesion layer (PAL), was calculated to assess the severity of material adhesion. In addition, the morphology of the produced chips and dust was analyzed to support the PAL results. The findings showed that the drill bit with the lowest PAL value demonstrated superior wear resistance, a longer tool life, and the ability to produce holes of higher quality when drilling AFRP and Al7075-T6 stacked materials. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

23 pages, 18306 KB  
Article
A New Double-Inclination Oblique Model to Simulate Drilling of GFRP/Al-Based Stacks: A Thermomechanical Approach
by Brahim Salem, Ali Mkaddem, Malek Habak, Yousef Dobah and Abdessalem Jarraya
Polymers 2025, 17(8), 1047; https://doi.org/10.3390/polym17081047 - 12 Apr 2025
Viewed by 812
Abstract
This paper reports an investigation of the thermomechanical behavior at the interface of GFRP/Al composite stacks when the stacking arrangement varies. A temperature-coupled damage approach was developed to simulate thermal energy transfer and damage propagation at metallic-to-composite interface. The proposed model was then [...] Read more.
This paper reports an investigation of the thermomechanical behavior at the interface of GFRP/Al composite stacks when the stacking arrangement varies. A temperature-coupled damage approach was developed to simulate thermal energy transfer and damage propagation at metallic-to-composite interface. The proposed model was then implemented into ABAQUS/Explicit finite element code using user-defined subroutine VUMAT finely imbricated with VDFLUX. Unlike to previous models, oblique cutting configuration (OCC) involving double-inclination of the tool was proposed to simulate finely the material removal process owing to drill action. Drilling trials involving the cutting speed and the stacking arrangement were conducted to support the proposed approach. The predictions revealed that increasing the spindle speed significantly impacts the temperature distribution and subsurface thermal damage. An exponential temperature law was derived for predicting temperature variation with the cutting speed and identifying thermal saturation at the interface. The sensitivity of the composite behavior to the stacking arrangement (GFRP → Al vs. Al → GFRP) was well highlighted. The results indicated that attacking the structure from the GFRP side results in higher interfacial temperatures due to GFRP’s lower thermal conductivity. These findings contribute to understanding the heat-affected zone in GFRP, and, hence, provide guidance to minimize thermal damage in industrial drilling of the hybrid stacks. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

17 pages, 16217 KB  
Article
Investigation of Temperature at Al/Glass Fiber-Reinforced Polymer Interfaces When Drilling Composites of Different Stacking Arrangements
by Brahim Salem, Ali Mkaddem, Malek Habak, Yousef Dobah, Makram Elfarhani and Abdessalem Jarraya
Polymers 2024, 16(19), 2823; https://doi.org/10.3390/polym16192823 - 6 Oct 2024
Cited by 2 | Viewed by 3663
Abstract
This attempt covers an investigation of cutting temperature at interfaces of Fiber Metal Laminates (FMLs) made of glass fiber-reinforced polymer (GFRP) stacked with an Al2020 alloy. GFRP/Al/GFRP and Al/GFRP/Al composite stacks are both investigated to highlight the effect of stacking arrangement on thermal [...] Read more.
This attempt covers an investigation of cutting temperature at interfaces of Fiber Metal Laminates (FMLs) made of glass fiber-reinforced polymer (GFRP) stacked with an Al2020 alloy. GFRP/Al/GFRP and Al/GFRP/Al composite stacks are both investigated to highlight the effect of stacking arrangement on thermal behavior within the interfaces. In a first test series, temperature history is recorded within the metal/composite stack interfaces using preinstalled thermocouples. In a second test series, a wireless telemetry system connected to K-type thermocouples implanted adjacent to the cutting edge of the solid carbide drill is used to record temperature evolution at the tool tip. Focus is put on the effects of cutting speed and stacking arrangement on the thrust force, drilling temperature, and delamination. From findings, the temperature histories show high sensitivity to the cutting speed. When cutting Al/GFRP/Al, the peak temperature is found to be much higher than that recorded in GFRP/Al/GFRP and exceeds the glass transition point of the GFRP matrix under critical cutting speeds. However, thrust force obtained at constitutive phases exhibits close magnitude when the stacking arrangement varies, regardless of cutting speed. Damage analysis is also discussed through the delamination factor at different stages of FML thickness. Full article
Show Figures

Figure 1

13 pages, 6236 KB  
Article
Microstructural Investigations of Weld Deposits from Manganese Austenitic Alloy on X2CrNiMoN22-5-3 Duplex Stainless Steel
by Ion Mitelea, Daniel Mutașcu, Olimpiu Karancsi, Corneliu Marius Crăciunescu, Dragoș Buzdugan and Ion-Dragoș Uțu
Appl. Sci. 2024, 14(9), 3751; https://doi.org/10.3390/app14093751 - 27 Apr 2024
Cited by 1 | Viewed by 1955
Abstract
Duplex stainless steels are materials with high performance under mechanical stress and stress corrosion in chloride ion environments. Despite being used in many new applications such as components for offshore drilling platforms as well as in the chemical and petrochemical industry, the automotive [...] Read more.
Duplex stainless steels are materials with high performance under mechanical stress and stress corrosion in chloride ion environments. Despite being used in many new applications such as components for offshore drilling platforms as well as in the chemical and petrochemical industry, the automotive industry, etc., they face issues of wear and hardness that limit current applications and prevent the creation of new use opportunities. To address these shortcomings, it is proposed to develop a hardfacing process by a special welding technique using a universal TIG source adapted for manual welding with a pulsed current, and a manganese austenitic alloy electrode as filler material. The opportunity to deposit layers of manganese austenitic steel through welding creates advantages related to the possibility of achieving high mechanical characteristics of this steel exclusively in the working area of the part, while the substrate material will not undergo significant changes in chemical composition. As a result of the high strain hardening rate, assisted mainly by mechanical twinning, manganese austenitic alloys having a face-centered cubic crystal lattice (f.c.c) and low stacking fault energy (SFE = 20–40 mJ/m2) at room temperature, exhibit high wear resistance and exceptional toughness. Following cold deformation, the hardness of the deposited metal increases to 465 HV5–490 HV5. The microstructural characteristics were investigated through optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), X-ray diffraction (XRD), and Vickers hardness measurements (HV). The obtained results highlighted the feasibility of forming hard coatings on duplex stainless steel substrates. Full article
Show Figures

Figure 1

26 pages, 9284 KB  
Review
Developments in Laminate Modification of Adhesively Bonded Composite Joints
by Farin Ramezani, Beatriz D. Simões, Ricardo J. C. Carbas, Eduardo A. S. Marques and Lucas F. M. da Silva
Materials 2023, 16(2), 568; https://doi.org/10.3390/ma16020568 - 6 Jan 2023
Cited by 25 | Viewed by 4635
Abstract
The use of carbon fibre reinforced polymer (CFRP) materials is increasing in many different industries, such as those operating in the aviation, marine, and automotive sectors. In these applications, composite parts are often joined with other composite or metallic parts, where adhesive bonding [...] Read more.
The use of carbon fibre reinforced polymer (CFRP) materials is increasing in many different industries, such as those operating in the aviation, marine, and automotive sectors. In these applications, composite parts are often joined with other composite or metallic parts, where adhesive bonding plays a key role. Unlike conventional joining methods, adhesive bonding does not add weight or require the drilling of holes, both of which are major sources of stress concentration. The performance of a composite joint is dependent on multiple factors and can be improved by modifying the adhesive layer or the composite layup of the adherend. Moreover, joint geometry, surface preparation, and the manufacturing methods used for production are also important factors. The present work reviews recent developments on the design and manufacture of adhesively bonded joints with composite substrates, with particular interest in adherend modification techniques. The effects of stacking sequence, use of thin-plies, composite metal laminates and its specific surface preparations, and the use of toughened surface layers in the composite adherends are described for adhesively bonded CFRP structures. Full article
Show Figures

Figure 1

22 pages, 5132 KB  
Article
Hole Quality Observation in Single-Shot Drilling of CFRP/Al7075-T6 Composite Metal Stacks Using Customized Twist Drill Design
by Jebaratnam Joy Mathavan, Muhammad Hafiz Hassan, Jinyang Xu and Gérald Franz
J. Compos. Sci. 2022, 6(12), 378; https://doi.org/10.3390/jcs6120378 - 8 Dec 2022
Cited by 10 | Viewed by 3796
Abstract
In the modern aircraft manufacturing industry, the use of fiber metal stack-up material plays an important role. During assembly, these stack-up materials need to be drilled, and single-shot drilling is the best option to avoid misalignments. This paper discusses hole quality in terms [...] Read more.
In the modern aircraft manufacturing industry, the use of fiber metal stack-up material plays an important role. During assembly, these stack-up materials need to be drilled, and single-shot drilling is the best option to avoid misalignments. This paper discusses hole quality in terms of hole edge defects and hole integrity with respect to tool geometry. In this study, tungsten carbide (WC) twist-type drills with various geometric features were fabricated, tested, and evaluated. Twenty custom twist drill bits with primary clearance angles ranging from 6° to 8°, chisel edge angles from 30° to 45°, and point angles from 130° to 140° were fabricated. The CFRP and Al 7075-T6 were stacked up, and a feed rate of 0.05 mm/rev and spindle speed of 2600 rev/min were used for all drilling experiments. The experimental array was constructed using response surface methodology (RSM) to design the experiments. The impact of factors and their importance on hole quality were investigated using analysis of variance (ANOVA). The study demonstrates that the primary clearance angle, followed by the chisel edge angle, is the most important factor determining hole quality. As a function of tool geometry, correlation models between exit delamination and burr height were developed. The findings suggested that, within the range of parameters examined, the proposed correlation models might be utilized to predict performance measures. For drilling CFRP/AL7075-T6 stack material in a single shot, the ideal twist drill geometry was determined to be a 45° chisel edge angle, 8° primary clearance angle, and 130° point angle. For optimum drill geometry, the discrepancy between the expected and actual experiment values was 0.11% for exit delamination and 9.72% for burr height. The findings of this research elucidate the relationship between tool geometry and hole quality in single-shot drilling of composite-metal stacks, and more specifically, they may serve as a useful, practical guide for single-shot drilling of CFRP/Al7075-T6 stack for the manufacture of aircraft. Full article
(This article belongs to the Special Issue Manufacturing of Fibrous Composites for Engineering Applications)
Show Figures

Figure 1

47 pages, 13304 KB  
Review
A Review on Drilling of Multilayer Fiber-Reinforced Polymer Composites and Aluminum Stacks: Optimization of Strategies for Improving the Drilling Performance of Aerospace Assemblies
by Gérald Franz, Pascal Vantomme and Muhammad Hafiz Hassan
Fibers 2022, 10(9), 78; https://doi.org/10.3390/fib10090078 - 9 Sep 2022
Cited by 34 | Viewed by 9152
Abstract
In recent years, the use of hybrid composite stacks, particularly CFRP/Al assemblies, and fiber metal laminates (FMLs) has progressively become a convincing alternative to fiber-reinforced polymers (FRPs) and conventional metal alloys to meet the requirements of structural weight reduction in the modern aerospace [...] Read more.
In recent years, the use of hybrid composite stacks, particularly CFRP/Al assemblies, and fiber metal laminates (FMLs) has progressively become a convincing alternative to fiber-reinforced polymers (FRPs) and conventional metal alloys to meet the requirements of structural weight reduction in the modern aerospace industry. These new structural materials, which combine greater mechanical properties with low specific mass, are commonly assembled by riveted and bolted joints. The drilling operation, which represents the essential hole-making process used in the aerospace industry, proves particularly challenging when it comes to achieving damage-free holes with tight tolerances for CFRP/Al stacks in one-shot operations under dry conditions due to the dissimilar mechanical and thermal behavior of each constituent. Rapid and severe tool wear, heat damage, oversized drilled holes and the formation of metal burrs are among the major issues induced by the drilling of multi-material stacks. This paper provides an in-depth review of recent advancements concerning the selection of optimized strategies for high-performance drilling of multi-material stacks by focusing on the significant conclusions of experimental investigations of the effects of drilling parameters and cutting tool characteristics on the drilling performance of aerospace assemblies with CFRP/Al stacks and FML materials. The feasibility of alternative drilling processes for improving the hole quality of hybrid composite stacks is also discussed. Full article
(This article belongs to the Special Issue Joining Technologies for Hybrid Polymeric Composites)
Show Figures

Figure 1

25 pages, 11970 KB  
Article
Multi-Objective Optimization in Single-Shot Drilling of CFRP/Al Stacks Using Customized Twist Drill
by Muhammad Hafiz Hassan, Jamaluddin Abdullah and Gérald Franz
Materials 2022, 15(5), 1981; https://doi.org/10.3390/ma15051981 - 7 Mar 2022
Cited by 31 | Viewed by 5553
Abstract
In recent years, the use of CFRP with titanium and/or aluminum to form materials for stacking has gained popularity for aircraft construction. In practice, single-shot drilling is used to create perfectly aligned holes for the composite-metal stack. Usually, standard twist drills, which are [...] Read more.
In recent years, the use of CFRP with titanium and/or aluminum to form materials for stacking has gained popularity for aircraft construction. In practice, single-shot drilling is used to create perfectly aligned holes for the composite-metal stack. Usually, standard twist drills, which are commonly available from tool suppliers, are used for practical reasons. However, existing twist drill bits exhibit rapid wear upon the drilling of composite-metal stack layers in single shot, due to the widely contrasting properties of the composite-metal stack, which causes poor surface quality. The stringent quality requirements for aircraft component manufacturing demands frequent drill bit replacement and thus incurs additional costs, a concern still unresolved for aircraft component manufacturers. Owing to highly contrasting properties of a composite-metal stack, it is obvious that standard twist drill cannot fulfil the rigorous drilling requirements, as it is pushed to the limit for the fabrication of high-quality, defect-free holes. In this work, customised twist drills of a tungsten carbide (WC) material with different geometric features were specially fabricated and tested. Twenty drill bits with customised geometries of varying chisel edge angle (30–45°), primary clearance angle (6–8°), and point angle (130–140°) were fabricated. The stacked-up materials used in this study was CFRP and aluminum alloy 7075-T6 (Al7075-T6) with a total thickness of 3.587 mm. This study aims to investigate the effect of twist drill geometry on hole quality using drilling thrust force signature as indicator. All drilling experiments were performed at spindle speed of 2600 rev/min and feed rate of 0.05 mm/rev. Design of experiments utilising response surface methodology (RSM) method was used to construct the experimental array. Analysis of variance (ANOVA) was used to study the effect of parameters and their significance to the thrust force and thus the hole quality. The study shows that the most significant parameter affecting the drilling thrust force and hole surface roughness is primary clearance angle, followed by chisel edge angle. Correlation models of CFRP thrust force (Y1), Al7075-T6 thrust force (Y2), CFRP hole surface roughness (Y3), Al7075-T6 hole surface roughness (Y4) as a function of the tool geometry were established. The results indicated that the proposed correlation models could be used to predict the performance indicators within the limit of factors investigated. The optimum twist drill geometry was established at 45° of chisel edge angle, 7° of primary clearance angle, and 130° of point angle for the drilling of CFRP/Al7075-T6 stack material in a single-shot process. The error between the predicted and actual experiment values was between 6.64% and 8.17% for the optimum drill geometry. The results from this work contribute new knowledge to drilling thrust force signature and hole quality in the single-shot drilling of composite-metal stacks and, specifically, could be used as a practical guideline for the single-shot drilling of CFRP/Al7075-T6 stack for aircraft manufacturing. Full article
(This article belongs to the Special Issue Advances in Mechanical Prediction of Composite Laminates)
Show Figures

Figure 1

13 pages, 4813 KB  
Article
Hybrid Composite-Metal Stack Drilling with Different Minimum Quantity Lubrication Levels
by J. Fernández-Pérez, J. L. Cantero, J. Díaz-Álvarez and M. H. Miguélez
Materials 2019, 12(3), 448; https://doi.org/10.3390/ma12030448 - 1 Feb 2019
Cited by 31 | Viewed by 5349
Abstract
Hybrid stack drilling is a very common operation used in the assembly of high-added-value components, which combines the use of composite materials and metallic alloys. This process entails the complexity of machining very dissimilar materials, simultaneously, on account of the interactions that are [...] Read more.
Hybrid stack drilling is a very common operation used in the assembly of high-added-value components, which combines the use of composite materials and metallic alloys. This process entails the complexity of machining very dissimilar materials, simultaneously, on account of the interactions that are produced between them, during machining. This study analyzed the influence of Minimum Quantity Lubrication (MQL) on the performance of diamond-coated carbide tools when drilling Ti/carbon fiber reinforced plastics (CFRP)/Ti stacks. The main wear mechanism observed was diamond-coating detachment, followed by fragile breaks in the main cutting-edge. The tests done with the lower lubrication levels have shown an important adhesion of titanium (mainly on the secondary cutting-edge) and a higher friction between the tool and the workpiece, producing higher temperatures on the cutting region and a thermal softening effect on the workpiece. These phenomena affect the evolution of cutting power consumption with tool wear in the titanium layer. Regarding the quality of the test specimen, no significant differences were observed between the lubrication levels tested. Full article
(This article belongs to the Special Issue Machining—Recent Advances, Applications and Challenges)
Show Figures

Figure 1

18 pages, 7822 KB  
Article
Influence of Abrasive Waterjet Parameters on the Cutting and Drilling of CFRP/UNS A97075 and UNS A97075/CFRP Stacks
by Raul Ruiz-Garcia, Pedro F. Mayuet Ares, Juan Manuel Vazquez-Martinez and Jorge Salguero Gómez
Materials 2019, 12(1), 107; https://doi.org/10.3390/ma12010107 - 30 Dec 2018
Cited by 53 | Viewed by 6244
Abstract
The incorporation of plastic matrix composite materials into structural elements of the aeronautical industry requires contour machining and drilling processes along with metallic materials prior to final assembly operations. These operations are usually performed using conventional techniques, but they present problems derived from [...] Read more.
The incorporation of plastic matrix composite materials into structural elements of the aeronautical industry requires contour machining and drilling processes along with metallic materials prior to final assembly operations. These operations are usually performed using conventional techniques, but they present problems derived from the nature of each material that avoid implementing One Shot Drilling strategies that work separately. In this work, the study focuses on the evaluation of the feasibility of Abrasive Waterjet Machining (AWJM) as a substitute for conventional drilling for stacks formed of Carbon Fiber Reinforced Plastic (CFRP) and aluminum alloy UNS A97050 through the study of the influence of abrasive mass flow rate, traverse feed rate and water pressure in straight cuts and drills. For the evaluation of the straight cuts, Stereoscopic Optical Microscopy (SOM) and Scanning Electron Microscopy (SEM) techniques were used. In addition, the kerf taper through the proposal of a new method and the surface quality in different cutting regions were evaluated. For the study of holes, the macrogeometric deviations of roundness, cylindricity and straightness were evaluated. Thus, this experimental procedure reveals the conditions that minimize deviations, defects, and damage in straight cuts and holes obtained by AWJM. Full article
(This article belongs to the Special Issue Carbon Fibers and Their Composite Materials)
Show Figures

Figure 1

13 pages, 9071 KB  
Article
Tool Wear Mechanism in Cutting of Stack CFRP/UNS A97075
by Severo Raul Fernandez-Vidal, Sergio Fernandez-Vidal, Moises Batista and Jorge Salguero
Materials 2018, 11(8), 1276; https://doi.org/10.3390/ma11081276 - 25 Jul 2018
Cited by 32 | Viewed by 4874
Abstract
The aeronautics industry’s competitiveness has led to the need to increase productivity with one shot drilling (OSD) systems capable of drilling stacks of dissimilar materials (fibre/metal laminates, FML) in order to reduce riveting times. Among the materials that constitute the current aeronautical models, [...] Read more.
The aeronautics industry’s competitiveness has led to the need to increase productivity with one shot drilling (OSD) systems capable of drilling stacks of dissimilar materials (fibre/metal laminates, FML) in order to reduce riveting times. Among the materials that constitute the current aeronautical models, composite materials and aluminium (Al) and titanium (Ti) alloys stand out. These one-pass machining techniques produce high-quality holes, especially when all the elements that have to be joined are made of the same material. This work has followed a conventional OSD strategy and the same cutting conditions applied to CFRP (carbo-fibre-reinforced polymer), Al and CFRP/Al stacked sheets to know the wear mechanisms produced. With this purpose, results were obtained by using current specific techniques, such as microstructural analysis, monitoring of the shear forces and analysis of macrogeometric deviations. It has been determined that when these drilling techniques are applied under the same cutting conditions to stacks of materials of a different nature, the results of the wear mechanisms acting on the tool differ from those obtained when machining each material separately. This article presents a comparison between the effects of tool wear during dry drilling of CFRP and UNS A97075 plates separately and when machined as stacks. Full article
(This article belongs to the Special Issue Special Issue of the Manufacturing Engineering Society (MES))
Show Figures

Figure 1

17 pages, 6210 KB  
Article
Evaluation of Workpiece Temperature during Drilling of GLARE Fiber Metal Laminates Using Infrared Techniques: Effect of Cutting Parameters, Fiber Orientation and Spray Mist Application
by Khaled Giasin and Sabino Ayvar-Soberanis
Materials 2016, 9(8), 622; https://doi.org/10.3390/ma9080622 - 28 Jul 2016
Cited by 48 | Viewed by 7571
Abstract
The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which [...] Read more.
The rise in cutting temperatures during the machining process can influence the final quality of the machined part. The impact of cutting temperatures is more critical when machining composite-metal stacks and fiber metal laminates due to the stacking nature of those hybrids which subjects the composite to heat from direct contact with metallic part of the stack and the evacuated hot chips. In this paper, the workpiece surface temperature of two grades of fiber metal laminates commercially know as GLARE is investigated. An experimental study was carried out using thermocouples and infrared thermography to determine the emissivity of the upper, lower and side surfaces of GLARE laminates. In addition, infrared thermography was used to determine the maximum temperature of the bottom surface of machined holes during drilling GLARE under dry and minimum quantity lubrication (MQL) cooling conditions under different cutting parameters. The results showed that during the machining process, the workpiece surface temperature increased with the increase in feed rate and fiber orientation influenced the developed temperature in the laminate. Full article
(This article belongs to the Special Issue Machining of Composites and Multi-Stacks of Aerospace Materials)
Show Figures

Graphical abstract

Back to TopTop