Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = squeezing and swelling deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 14630 KB  
Article
Atomic Insight into the Nano-Grinding Mechanism of Reaction-Bonded Silicon Carbide: Effect of Abrasive Size
by Honglei Mo, Xie Chen, Cui Luo and Xiaojiang Cai
Micromachines 2025, 16(9), 1049; https://doi.org/10.3390/mi16091049 - 15 Sep 2025
Viewed by 731
Abstract
Reaction-bonded silicon carbide (RB-SiC) is a high-performance ceramic material known for its excellent mechanical, thermal, and chemical properties. It contains phases with different mechanical properties, which introduce complex machining mechanisms. In the present work, molecular dynamics (MD) simulation was conducted to investigate the [...] Read more.
Reaction-bonded silicon carbide (RB-SiC) is a high-performance ceramic material known for its excellent mechanical, thermal, and chemical properties. It contains phases with different mechanical properties, which introduce complex machining mechanisms. In the present work, molecular dynamics (MD) simulation was conducted to investigate the effect of abrasive size on the nano-grinding mechanism of RB-SiC. The surface morphology and subsurface deformation mechanism were investigated. The simulation results suggest that when a small abrasive is used, the surface swelling of SiC is primarily generated by the bending and tearing of SiC at the interfaces. As the abrasive radius increases, the surface swelling is mainly formed by Si atoms, which is identified as elastic recovery. Meanwhile, the material removal rate gradually decreases, and the depth of plastic deformation is obviously increased. Stocking of Si is more apparent at the interface, and obvious sliding of SiC grains is observed, forming edge cracks at the margin of the workpiece. In the subsurface workpiece, the high-pressure phase transition (HPPT) of Si is promoted, and the squeeze of disordered Si is obvious with more dislocations formed when larger abrasive is used. Full article
(This article belongs to the Special Issue Future Trends in Ultra-Precision Machining)
Show Figures

Figure 1

14 pages, 9210 KB  
Article
A New Approach to Studying the Mechanical Characteristics of the Anchoring–Grouting System in Broken Surrounding Rock
by Lei Wang and Wei Lu
Sensors 2023, 23(21), 8931; https://doi.org/10.3390/s23218931 - 2 Nov 2023
Cited by 4 | Viewed by 1322
Abstract
With the increasing depletion of shallow coal resources, deep roadway excavation has become the main direction in the development of coal mining. Due to geological conditions including high stress and extremely broken rock, disasters such as squeezing, bulging, and swelling are widely observed. [...] Read more.
With the increasing depletion of shallow coal resources, deep roadway excavation has become the main direction in the development of coal mining. Due to geological conditions including high stress and extremely broken rock, disasters such as squeezing, bulging, and swelling are widely observed. The anchoring–grouting support method is one of the most effective methods of surrounding rock reinforcement. To study the mechanical characteristics of the anchoring–grouting system in broken surrounding rock, laboratory tests considering the water–cement ratio and preload were carried out. The research results show that the internal force of support and the deformation of the support surface have close relationships with the bearing stages of the anchoring–grouting system. The optimal water–cement ratio and a higher preload can improve the cooperative bearing characteristics of surrounding rock and its support, which is of great significance for enhancing the strength of surrounding rock and reducing roadway deformation. The research results can provide a reference for anchoring–grouting support design in deep roadway excavation. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensor for Mining)
Show Figures

Figure 1

19 pages, 5459 KB  
Article
Characteristics and Mechanism of Large Deformation of Tunnels in Tertiary Soft Rock: A Case Study
by Dengxue Liu, Shuling Huang, Xiuli Ding, Jianjun Chi and Yuting Zhang
Buildings 2023, 13(9), 2262; https://doi.org/10.3390/buildings13092262 - 6 Sep 2023
Cited by 7 | Viewed by 2903
Abstract
During the excavation of a water-conveyance tunnel in Tertiary soft rocks in China, significant deformation of the surrounding rocks and damage to the support were observed. Substantial horizontal deformation, reaching magnitudes of meters, was observed in the right side wall after a certain [...] Read more.
During the excavation of a water-conveyance tunnel in Tertiary soft rocks in China, significant deformation of the surrounding rocks and damage to the support were observed. Substantial horizontal deformation, reaching magnitudes of meters, was observed in the right side wall after a certain period of tunnel excavation. Extensive investigations, including field surveys, monitoring data analysis, laboratory tests, and numerical simulations, were conducted to understand the underlying mechanisms of this large deformation. The section of the tunnel with large deformation consisted of Tertiary sandy mudstone, mudstone interbedded with marl, and glutenite. Laboratory tests and mineral composition analysis revealed that the sandy mudstone and mudstone interbedded with marl exhibited low strength, which was closely related to the water content of the rock specimens. The compressive strength gradually decreased with increasing water content, and when the water content of mudstone interbedded with marl reached 26.96%, the uniaxial compressive strength decreased to only 0.24 MPa. Additionally, sandy mudstone and mudstone interbedded with marl contained a significant amount of hydrophilic minerals, with montmorillonite constituting 30% and 34% of the two rock samples, respectively. The tunnel passed beneath a perennially flowing gully, and a highly permeable glutenite layer was present in the middle of the tunnel. This resulted in groundwater seepage from the inverted arch during excavation, leading to the softening effect on the mudstone interbedded with marl in the lower part of the tunnel. Through numerical simulation and back-analysis techniques, the varying degrees of softening induced by groundwater were quantitatively analyzed in the surrounding rocks on the left and right sides. The study revealed that the large deformation of the tunnel was triggered by two factors: the plastic flow caused by tunnel excavation under the low strength of the surrounding rocks and the softening effect of groundwater. The damage to the support system was primarily attributed to the squeezing and swelling deformation of the surrounding rocks and the non-uniform deformation between different rock layers. Full article
Show Figures

Figure 1

17 pages, 9430 KB  
Article
Numerical Investigation of the Upside-Down Hanging Well Combined with Curtain Grouting for Strengthening a Flood Control Ancient Levee
by Zipeng Qin, Yan Tian, Siyuan Gao, Jianfen Zhou, Haitao Zhao, Zhizhuo Guo, Tannong Chen and Zhiping Hua
Sustainability 2023, 15(5), 4287; https://doi.org/10.3390/su15054287 - 28 Feb 2023
Cited by 4 | Viewed by 2141
Abstract
The ancient levees used for flood control generally exist in the rainy areas of southern China. After years of operation, the levees have lots of problems, such as leakage, swelling, and cracking, which need to be reinforced. In this paper, combined with the [...] Read more.
The ancient levees used for flood control generally exist in the rainy areas of southern China. After years of operation, the levees have lots of problems, such as leakage, swelling, and cracking, which need to be reinforced. In this paper, combined with the characteristics of river water level fluctuations, the effect of the upside-down hanging well and curtain grouting reinforcement of the ancient levee is analyzed by a numerical method, and the variation law of the levee’s stability in the flooding process before and after reinforcement is explored. The study results show that the flooding process significantly affects the pore water pressure of the filling soil between the ancient levee and the well, and has a weak impact on that behind the well, which is conducive to the levee’s stability. The horizontal displacements of the levee and the fill present the opposite change law before and after reinforcement. Before reinforcement, the maximum horizontal displacement reached 2.75 cm, and the displacement was toward the Lan River. This was caused by the deformation of the soil squeezing the levee after the water level rose, which was extremely unfavorable to the levee’s stability. After reinforcement, the levee and fill shifted away from the river, mainly due to the hydrostatic pressures caused by the rising water level. The change in the stability safety factors of the reinforced levee is basically consistent with the flood fluctuation. The minimum value of the safety factors is 1.727, the maximum value is 2.273, and the safety factor only decreases by 24.02%, which is half of the change range of the safety factors before reinforcement. The stability of the reinforced ancient levee is largely improved. Full article
Show Figures

Figure 1

14 pages, 3085 KB  
Article
Influence of Volume Fracturing on Casing Stress in Horizontal Wells
by Jingpeng Wang, Youming Xiong, Zongyu Lu, Jiangang Shi and Jiwei Wu
Energies 2021, 14(8), 2057; https://doi.org/10.3390/en14082057 - 8 Apr 2021
Cited by 8 | Viewed by 2283
Abstract
In horizontal wells, the casing string is affected by the gravity effect, temperature effect, swelling effect, bending effect, friction effect and other mechanical effects. In view of this situation, the mathematical models of casing swelling effect and temperature effect caused by volume fracturing [...] Read more.
In horizontal wells, the casing string is affected by the gravity effect, temperature effect, swelling effect, bending effect, friction effect and other mechanical effects. In view of this situation, the mathematical models of casing swelling effect and temperature effect caused by volume fracturing are established. The case analysis shows that the length of the unsealed section in the vertical section has a great influence on the axial shortening of the casing during fracturing. With the increase of the unsealed section length, the axial shortening of the casing increases gradually under the same wellhead pressure. In the process of fracturing, repeated squeezing and pressurization lead to periodic changes of the wellhead pressure, casing deformation and load, which leads to fatigue damage and even fracture of casing. At the same time, a large amount of fracturing fluid is continuously injected through the casing during the fracturing process, which makes the wellbore temperature change greatly. The additional stress caused by the temperature change reduces the casing strength, which has an important impact on the wellbore integrity. The mathematical model of temperature stress and its effect on the casing strength during volume fracturing is established. With the increase of the temperature stress acting on the casing, the casing collapse strength decreases gradually. When the temperature stress reaches 200 MPa, the casing collapse strength decreases to 84% of the original. The research results can provide a reference for the casing integrity design and control in the horizontal well fracturing process. Full article
Show Figures

Figure 1

20 pages, 6669 KB  
Article
Mitigation of Lost Circulation in Oil-Based Drilling Fluids Using Oil Absorbent Polymers
by Hanyi Zhong, Guangcheng Shen, Peng Yang, Zhengsong Qiu, Junbin Jin and Xiaodong Xing
Materials 2018, 11(10), 2020; https://doi.org/10.3390/ma11102020 - 18 Oct 2018
Cited by 44 | Viewed by 6390
Abstract
In order to mitigate the loss circulation of oil-based drilling fluids (OBDFs), an oil-absorbent polymer (OAP) composed by methylmethacrylate (MMA), butyl acrylate (BA), and hexadecyl methacrylate (HMA) was synthesized by suspension polymerization and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) [...] Read more.
In order to mitigate the loss circulation of oil-based drilling fluids (OBDFs), an oil-absorbent polymer (OAP) composed by methylmethacrylate (MMA), butyl acrylate (BA), and hexadecyl methacrylate (HMA) was synthesized by suspension polymerization and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and scanning electronic microscopy (SEM). The oil-absorptive capacity of OAP under different solvents was measured as the function of temperature and time. The effect of the OAP on the rheological and filtration properties of OBDFs was initially evaluated, and then the sealing property of OAP particles as lost circulation materials (LCMs) was examined by a high-temperature and high-pressure (HTHP) filtration test, a sand bed filtration test, a permeable plugging test, and a fracture sealing testing. The test results indicated that the addition of OAP had relatively little influence on the rheological properties of OBDF at content lower than 1.5 w/v % but increased the fluid viscosity remarkably at content higher than 3 w/v %. It could reduce the HTHP filtration and improve the sealing capacity of OBDF significantly. In the sealing treatment, after addition into the OBDF, the OAP particles could absorb oil accompanied with volume enlargement, which led to the increase of the fluid viscosity and slowing down of the fluid loss speed. The swelled and deformable OAP particles could be squeezed into the micro-fractures with self-adoption and seal the loss channel. More important, fluid loss was dramatically reduced when OAP particles were combined with other conventional LCMs by a synergistic effect. Full article
Show Figures

Figure 1

Back to TopTop