Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = spoof localized surface plasmon resonance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3091 KB  
Article
Microwave Detection of Carbon Monoxide Gas via a Spoof Localized Surface Plasmons-Enhanced Cavity Antenna
by Meng Wang, Wenjie Xu and Shitao Sun
Micromachines 2025, 16(7), 790; https://doi.org/10.3390/mi16070790 - 2 Jul 2025
Viewed by 815
Abstract
This paper presents a carbon monoxide (CO) detection mechanism achieved through further improvement of the sensing antenna based on hybrid spoof localized surface plasmons (SLSPs) and cavity resonance. Unlike conventional approaches relying on chemical reactions or photoelectric effects, the all-metal configuration detects dielectric [...] Read more.
This paper presents a carbon monoxide (CO) detection mechanism achieved through further improvement of the sensing antenna based on hybrid spoof localized surface plasmons (SLSPs) and cavity resonance. Unlike conventional approaches relying on chemical reactions or photoelectric effects, the all-metal configuration detects dielectric variations through microwave-regime resonance frequency shifts, enabling CO/air differentiation with theoretically enhanced robustness and environmental adaptability. The designed system achieves measured figures of merit (FoMs) of 183.2 RIU−1, resolving gases with dielectric contrast below 0.1%. Experimental validation successfully discriminated CO (εr = 1.00262) from air (εr = 1.00054) under standard atmospheric pressure at 18 °C. Full article
(This article belongs to the Special Issue Current Research Progress in Microwave Metamaterials and Metadevices)
Show Figures

Figure 1

13 pages, 2953 KB  
Article
Voltage Tunable Spoof Surface Plasmon Polariton Waveguide Loaded with Ferroelectric Resonators
by Jiaxiong Shen, Shun Lei, Mingzhe Hu, Chaobiao Zhou, Shengyun Luo and Chuanbin Wang
Coatings 2025, 15(4), 378; https://doi.org/10.3390/coatings15040378 - 23 Mar 2025
Viewed by 1973
Abstract
A real-time tunable planar plasmonic waveguide based on a voltage-adjustable ferroelectric resonator is designed and investigated. The laminated ferroelectric compound resonator is composed of a ferroelectric Ba0.85Ca0.15Zr0.9Ti0.1O3 (BCZT) layer, a PCB layer, as well [...] Read more.
A real-time tunable planar plasmonic waveguide based on a voltage-adjustable ferroelectric resonator is designed and investigated. The laminated ferroelectric compound resonator is composed of a ferroelectric Ba0.85Ca0.15Zr0.9Ti0.1O3 (BCZT) layer, a PCB layer, as well as a localized spoof plasmonic metal layer, where the BCZT layer is beneficial for enhancing the voltage tunability in the spoof surface plasmon polariton (SSPP) waveguide. The simulated results show that the tuning range of the notch in the transmission curve, generated by the coupling between the ferroelectric compound resonator and the plasmonic waveguide, can achieve a variation of up to 8.8% thanks to the large tunability value in the BCZT ferroelectric layer. In addition, the notches consist of Fano resonant frequencies, the generation mechanism of which is elaborately discussed in terms of the temporal coupled mode theory. Full article
Show Figures

Figure 1

11 pages, 4940 KB  
Article
Terahertz CMOS High-Sensitivity Sensor Based on Hybridized Spoof Surface Plasmon Resonator
by Ming Wan, Chenchen Li, Di Bao, Jiangpeng Wang, Kai Lu, Zhenyu Qu and Hao Gao
Photonics 2025, 12(2), 102; https://doi.org/10.3390/photonics12020102 - 23 Jan 2025
Cited by 4 | Viewed by 1502
Abstract
In recent years, spoof localized surface plasmon (SLSP) have gained increasing attention due to their strong electromagnetic wave confinements. Based on the multipole resonance of SLSP, a high-Q-factor terahertz resonator based on CMOS technology is proposed. Specifically, a quadrilateral hybridized SLSP structure, composed [...] Read more.
In recent years, spoof localized surface plasmon (SLSP) have gained increasing attention due to their strong electromagnetic wave confinements. Based on the multipole resonance of SLSP, a high-Q-factor terahertz resonator based on CMOS technology is proposed. Specifically, a quadrilateral hybridized SLSP structure, composed of a core and a cavity SLSP resonator, is designed to reduce electric dimension and improve the Q-factor. The experimentally measured Q-factor reached 56.7 at 194 GHz, which is quite a high value within the terahertz frequency band, particularly given the compact electrical dimension of 0.081λ × 0.081λ. Moreover, pharmaceutical testing in the terahertz frequency range was successfully conducted, including glucose and two traditional Chinese medicines: Chuanbei and Sanqi. And three frequency shifts (4 GHz, 3.2 GHz, and 1.4 GHz) were observed. Thus, the SLSP resonator holds great potential for high-performance terahertz applications. Full article
(This article belongs to the Special Issue New Trends in Terahertz Photonics)
Show Figures

Figure 1

14 pages, 2558 KB  
Article
Principles of Measuring Thickness and Refractive Index of Thin Dielectric Film by Using Multiresonance Archimedean Spiral Metasurfaces with C Resonator in the Terahertz Frequency Range
by Oleg Kameshkov and Vasily Gerasimov
Photonics 2024, 11(6), 529; https://doi.org/10.3390/photonics11060529 - 2 Jun 2024
Viewed by 1758
Abstract
Metasurfaces are an excellent platform for terahertz (THz) sensing applications, enabling highly efficient light–matter interaction and overcoming the fundamental disadvantage of the relatively long-wavelength THz range (30–3000 μm), which limits sensing of small features. The current focus in developing metasurfaces is mostly directed [...] Read more.
Metasurfaces are an excellent platform for terahertz (THz) sensing applications, enabling highly efficient light–matter interaction and overcoming the fundamental disadvantage of the relatively long-wavelength THz range (30–3000 μm), which limits sensing of small features. The current focus in developing metasurfaces is mostly directed toward single-resonance metasurfaces and reconstruction of the dielectric constants of analyte from the saturation mode induced by the limited sensing volume of the metasurface. This paper presents a numerical demonstration of using a multiresonance metasurface to extract the thickness and refractive index of a deposited film without saturation of the sensor. It was shown that the multiresonance property enables determination of the analyte characteristic via measurements with two different thicknesses and tracking changes in two resonances. High-accuracy parameter retrieval is achieved when there are large differences in the thicknesses. In contrast to the established approach, this method provides an efficient way to avoid using relatively thick films. Full article
(This article belongs to the Special Issue Multifunctional Metasurfaces: Design Strategies and Applications)
Show Figures

Figure 1

17 pages, 8174 KB  
Communication
Sensing Performance Analysis of Spiral Metasurface Utilizing Phase Spectra Measurement Technique
by Oleg Kameshkov, Vasily Gerasimov and Sergei Kuznetsov
Photonics 2023, 10(3), 243; https://doi.org/10.3390/photonics10030243 - 23 Feb 2023
Cited by 6 | Viewed by 2554
Abstract
We have demonstrated both numerically and experimentally a 2D plasmonic metamaterial the unit cell of which comprised an Archimedean spiral with a C-shaped resonator. Such metasurface enables the excitation of spoof localized plasmon resonances (LPRs) in the terahertz frequency range, similar in properties [...] Read more.
We have demonstrated both numerically and experimentally a 2D plasmonic metamaterial the unit cell of which comprised an Archimedean spiral with a C-shaped resonator. Such metasurface enables the excitation of spoof localized plasmon resonances (LPRs) in the terahertz frequency range, similar in properties to the familiar LPRs in the visible range. We have compared the thin-film sensing potentials of the fundamental and dark resonant modes supported by the metasurface in the range of 0.2–0.5 THz. Both the amplitude and phase transmission spectra have been studied. A sensitivity of 21.1%/RIU (78.7 GHz/RIU) and a figure of merit (FOM) of 14.4 RIU−1 have been achieved. The FOM and Q factor obtained from the phase transmission spectra were shown to be about twice higher than those obtained from the amplitude spectra. Full article
(This article belongs to the Special Issue Advanced Photonic Sensing and Measurement)
Show Figures

Figure 1

14 pages, 4558 KB  
Article
Millimeter-Wave-Based Spoof Localized Surface Plasmonic Resonator for Sensing Glucose Concentration
by Yelim Kim, Ahmed Salim and Sungjoon Lim
Biosensors 2021, 11(10), 358; https://doi.org/10.3390/bios11100358 - 28 Sep 2021
Cited by 19 | Viewed by 4102
Abstract
Glucose-monitoring sensors are necessary and have been extensively studied to prevent and control health problems caused by diabetes. Spoof localized surface plasmon (LSP) resonance sensors have been investigated for chemical sensing and biosensing. A spoof LSP has similar characteristics to an LSP in [...] Read more.
Glucose-monitoring sensors are necessary and have been extensively studied to prevent and control health problems caused by diabetes. Spoof localized surface plasmon (LSP) resonance sensors have been investigated for chemical sensing and biosensing. A spoof LSP has similar characteristics to an LSP in the microwave or terahertz frequency range but with certain advantages, such as a high-quality factor and improved sensitivity. In general, microwave spoof LSP resonator-based glucose sensors have been studied. In this study, a millimeter-wave-based spoof surface plasmonic resonator sensor is designed to measure glucose concentrations. The millimeter-wave-based sensor has a smaller chip size and higher sensitivity than microwave-frequency sensors. Therefore, the microfluidic channel was designed to be reusable and able to operate with a small sample volume. For alignment, a polydimethylsiloxane channel was simultaneously fabricated using a multilayer bonding film to attach the upper side of the pattern, which is concentrated in the electromagnetic field. This real-time sensor detects the glucose concentration via changes in the S11 parameter and operates at 28 GHz with an average sensitivity of 0.015669 dB/(mg/dL) within the 0–300 mg/dL range. The minimum detectable concentration and the distinguishable signal are 1 mg/dL and 0.015669 dB, respectively, from a 3.4 μL sample. The reusability and reproducibility were assessed through replicates. Full article
(This article belongs to the Special Issue Electrical and Electro-Optical Biosensors)
Show Figures

Figure 1

11 pages, 6067 KB  
Article
Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes
by Qian Yang, Shuangyang Liu, Hongyu Shi, Kai-Da Xu, Xinyue Dai, Hao Du and Anxue Zhang
Materials 2021, 14(10), 2614; https://doi.org/10.3390/ma14102614 - 17 May 2021
Viewed by 2347
Abstract
A corrugated disk resonator with eight grooves is proposed for wideband bandpass filter (BPF) design. Due to the spoof localized surface plasmons resonances of the corrugated metallic structure, the dipole, quadrupole, hexapole modes, and a fundamental mode excited by the introduced short-circuited via [...] Read more.
A corrugated disk resonator with eight grooves is proposed for wideband bandpass filter (BPF) design. Due to the spoof localized surface plasmons resonances of the corrugated metallic structure, the dipole, quadrupole, hexapole modes, and a fundamental mode excited by the introduced short-circuited via holes are employed to realize four transmission poles (TPs) in the passband. The theoretical analysis is described by the electric field and current distributions on the resonator. The resonant frequencies can be tuned easily by the parameters of the structure, which can be used to adjust the center frequency and bandwidth of the BPF freely. Furthermore, two resonators are cascaded to obtain eight TPs to improve the selectivity performance. Finally, three fabricated filters demonstrate the design method. Full article
Show Figures

Figure 1

12 pages, 564 KB  
Review
Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR)
by Iltai (Isaac) Kim and Kenneth David Kihm
Materials 2015, 8(7), 4332-4343; https://doi.org/10.3390/ma8074332 - 16 Jul 2015
Cited by 13 | Viewed by 8069
Abstract
Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR) imaging, which can detect the material properties, such as density, [...] Read more.
Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR) imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ) phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique. Full article
(This article belongs to the Special Issue Plasmonic Materials)
Show Figures

Figure 1

Back to TopTop