Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes
Abstract
1. Introduction
2. Proposed Corrugated Disk Resonator Design
3. Analysis of Resonances
4. Discuss
4.1. Discuss of Utilized Resonances
4.2. Discuss of Adjusting Resonances
5. BPF Design
5.1. Design of Four-Pole BPF
- (1)
- Determine the required specifications of BPF, the bandwidth, the center frequency, and the lower sideband frequency, which approximates to the resonant frequency of the M0 mode.
- (2)
- According to the bandwidth, choose a value of r/R, the lower sideband frequency of the passband and the value of r/R can be used to determine the parameters r and R.
- (3)
- The lengths of the grooves can be determined by the bandwidth.
- (4)
- Finally, the length L1 and L2 can be slightly tuned to have good return losses in the passband.
5.2. Design of Eight-Pole BPF
6. Simulations and Measured Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hadarig, R.C.; Gomez, M.E.D.C.; Las-Heras, F. A compact band-pass filter with high selectivity and second harmonic suppression. Materials 2013, 6, 5613–5624. [Google Scholar] [CrossRef]
- Liu, A.; Qi, L.; Shah, S.M.A.; Sun, D.; Li, B. Design of broad stopband filters based on multilayer electromagnetically induced transparency metamaterial structures. Materials 2019, 12, 841. [Google Scholar] [CrossRef]
- Sorocki, J.; Piekarz, I.; Wincza, K.; Gruszczynski, S. Semi-distributed approach to dual-composite right/left-handed transmission lines and their application to bandstop filters. IEEE Microw. Wireless Compon. Lett. 2015, 25, 784–786. [Google Scholar] [CrossRef]
- Shen, G.; Che, W.; Feng, W.; Xue, Q. Analytical design of compact dual-band filters using daul composite right-/left-handed resonators. IEEE Trans. Microw. Theory Tech. 2017, 65, 804–904. [Google Scholar] [CrossRef]
- Shen, G.; Che, W.; Xue, Q. Novel tri-band bandpass filter with independently controllable frequencies, bandwidths, and return losses. IEEE Microw. Wireless Compon. Lett. 2017, 6, 560–562. [Google Scholar] [CrossRef]
- Pors, A.; Moreno, E.; Martin-Moreno, L.; Pendry, J.B.; Garcia-Vidal, F.J. Localized spoof plasmons arise while texturing closed surfaces. Phys. Rev. Lett. 2012, 108, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.J.; Xiao, Q.X.; Yang, B.J. Spoof localized surface plasmons on ultrathin textured MIM ring resonator with enhanced resonances. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Yang, B.J.; Zhou, Y.J.; Xiao, Q.X. Spoof localized surface plasmons in corrugated ring structures excited by microstrip line. Opt. Express 2015, 23, 21434. [Google Scholar] [CrossRef]
- Gao, Z.; Gao, F.; Xu, H.; Zhang, Y.; Zhang, B. Localized spoof surface plasmons in textured open metal surfaces. Opt. Lett. 2016, 41, 2181–2184. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Wang, J.; Yu, W.; Li, J.; Shen, X. A novel broadband band-pass filter based on spoof surface plasmon polaritons. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Guo, Y.J.; Xu, K.D.; Deng, X.; Cheng, X.; Chen, Q. Millimeter-wave on-chip bandpass filter based on spoof surface plasmon polaritions. IEEE Electron. Device Lett. 2020, 41, 1165–1168. [Google Scholar] [CrossRef]
- Xu, K.D.; Guo, Y.J.; Yang, Q.; Zhang, Y.L.; Deng, X.; Zhang, A.; Chen, Q. On-chip GaAs-based spoof surface plasmon polaritions at millimeter-wave regime. IEEE Photonics Technol. Lett. 2021, 33, 255–258. [Google Scholar] [CrossRef]
- Wei, Y.; Wu, Y.; Wang, W.; Pan, L.; Yang, Y.; Liu, Y. Double-sided spoof surface plasmon polaritons-line bandpass filter with excellent dual-band filtering and wide upper band suppressions. IEEE Trans. Plasma Sci. 2020, 48, 4134–4143. [Google Scholar] [CrossRef]
- Kim, I.; Kihm, D.K. Nano sensing and energy conversion using surface plasmon resonance (SPR). Materials 2015, 8, 4332–4343. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, H.; Xiong, J.; Hou, J.; Zhou, R.; Deng, F.; Tang, R. A broadband metamaterial absorber design using characteristic modes analysis. J. Appl. Phys. 2021, 129, 134902. [Google Scholar] [CrossRef]
- Xiao, Q.X.; Yang, B.J.; Zhou, Y.J. Planar plasmonic sensor based on spoof localized surface plasmons. In Proceedings of the IEEE 2015 Asia-Pacific Microwave Conference (APMC), Nanjing, China, 6–9 December 2015. [Google Scholar] [CrossRef]
- Lan, Y.; Xu, Y.; Li, S.; Mei, T.; Lv, B.; Zhang, Y.; Yan, B.; Xu, R. An X-band surface plasmons frequency selective surface based on spoof localized surface plasmons resonators. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, L.; Wu, F.; Li, Y.; Cao, R. Appling spoof surface plasmons to non-destructive testing. In Proceedings of the 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC 2018), Chongqing, China, 12–14 October 2018; pp. 330–333. [Google Scholar]
- Fujita, K. A partially implicit FDTD method for the wideband analysis of spoof localized surface plasmons. IEEE Photonics Tech. Lett. 2015, 27, 1124–1127. [Google Scholar] [CrossRef]
- Cui, T.J.; Shen, X. Spoof surface plasmons on ultrathin corrugated metal structures in microwave and terahertz frequencies. In Proceedings of the Seventh International Congress on Advanced Electromagnetic Materials in Microwaves and Optics-Metamaterials 2013, Bordeaux, France, 16–21 September 2013; pp. 536–539. [Google Scholar]
- Xu, Z.; Li, S.; Liu, Y.; Zhao, H.; Yin, X. Characteristic mode analysis of complex spoof localized surface plasmon resonators. IEEE Access 2018, 6, 2781–2788. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Y.J.; Xiao, Q.X.; Zhang, C. Tunable spoof localized surface plasmons on dual corrugated disks. In Proceedings of the 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, China, 16–19 October 2017. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, G.; Sun, L.; Li, Y.; Cao, R. Localised spoof surface plasmon-based sensor for omni-directional cracks detection in metal surfaces. IET Microw. Antennas Propag. 2019, 13, 2061–2066. [Google Scholar] [CrossRef]
- Shibayama, J.; Yamauchi, J.; Nakano, H. Metal disc-type splitter with radially placed gratings for terahertz surface waves. Electron. Lett. 2015, 51, 352–353. [Google Scholar] [CrossRef]
- Yang, Z.B.; Guan, D.F.; Huang, X.; Zhang, H.C.; You, P.; Xu, S.D.; Liu, L.; Yong, S.W. Compact and wideband octuple-mode filter based on hybride substrate integrated waveguide and spoof localized surface plasmon structure. IEEE Trans. Circuits Syst. II Express Briefs 2020. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, S.; Dai, X.; Du, H.; Guo, C.; Zhang, A.; Xu, K.D. Triple-mode bandpass filter based on short-circuited patch resonator. Electron. Lett. 2021. [Google Scholar] [CrossRef]
- Deslandes, D.; Wu, K. Single-substrate integration technique of planar circuits and waveguide filters. IEEE Trans. Microw. Theory Tech. 2003, 51, 593–596. [Google Scholar] [CrossRef]
Ref. | f0 | IL (dB) | FBW (%) | Modes | Stopband | Size (λg × λg ) |
---|---|---|---|---|---|---|
[10] | 8.5 | 1.5 | 35.3 | -- | 1.5f0 | 4.85 × 0.92 |
[12] | 65 | 2.0 | 50.5 | 3 | -- | 0.86 × 0.16 |
[24] | 10.2 | 0.8 | 63.0 | 8 | -- | 1.28 × 1.28 |
BPF-I | 6.5 | 1.6 | 70.0 | 4 | 2.3f0 | 0.65 × 0.65 |
BPF-II | 3.3 | 1.4 | 79.3 | 4 | 3f0 | 0.33 × 0.33 |
BPF-III | 6.4 | 1.7 | 66.3 | 8 | 2.6f0 | 1.28 × 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Liu, S.; Shi, H.; Xu, K.-D.; Dai, X.; Du, H.; Zhang, A. Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes. Materials 2021, 14, 2614. https://doi.org/10.3390/ma14102614
Yang Q, Liu S, Shi H, Xu K-D, Dai X, Du H, Zhang A. Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes. Materials. 2021; 14(10):2614. https://doi.org/10.3390/ma14102614
Chicago/Turabian StyleYang, Qian, Shuangyang Liu, Hongyu Shi, Kai-Da Xu, Xinyue Dai, Hao Du, and Anxue Zhang. 2021. "Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes" Materials 14, no. 10: 2614. https://doi.org/10.3390/ma14102614
APA StyleYang, Q., Liu, S., Shi, H., Xu, K.-D., Dai, X., Du, H., & Zhang, A. (2021). Design of Wideband Bandpass Filter Based on Corrugated Disk Resonator with Multiple Resonant Modes. Materials, 14(10), 2614. https://doi.org/10.3390/ma14102614