Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = spondyloepiphyseal dysplasia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2830 KiB  
Article
Detecting Early Changes in Cartilage Collagen and Proteoglycans Distribution Gradients in Mice Harboring the R992C Collagen II Mutant Using 2D Correlation Infrared Spectroscopy
by Jolanta Fertala, Andrzej Steplewski and Andrzej Fertala
Biophysica 2025, 5(3), 24; https://doi.org/10.3390/biophysica5030024 - 22 Jun 2025
Viewed by 295
Abstract
Collagen II is a vital structural component in developing bones and mature cartilage. Mutations in this protein cause spondyloepiphyseal dysplasia, a disease characterized primarily by altered skeletal growth and manifesting with a range of phenotypes, from lethal to mild. This study examined transgenic [...] Read more.
Collagen II is a vital structural component in developing bones and mature cartilage. Mutations in this protein cause spondyloepiphyseal dysplasia, a disease characterized primarily by altered skeletal growth and manifesting with a range of phenotypes, from lethal to mild. This study examined transgenic mice harboring the R992C (p.R1124C) substitution in collagen II. Previous research demonstrated significant growth abnormalities and disorganized growth plate structure in these mice, and histological signs of osteoarthritic changes in the knee joints of 9-month-old mice with the R992C mutation. Our study focuses on detecting early structural changes in the articular cartilage that occur before histological signs become apparent. Through microscopic and spectroscopic analyses, we observed significant alterations in the distribution gradients of collagenous proteins and proteoglycans in the cartilage of R992C mutant mice. We propose that these early changes, eventually leading to articular cartilage degeneration in older mice, underscore the progressive nature of osteoarthritic changes linked to collagen II mutations. By identifying these early structural aberrations, our findings emphasize the importance of early detection of osteoarthritic changes, potentially facilitating timely, non-surgical interventions. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

16 pages, 961 KiB  
Article
Genetic and Clinical Features of Schimke Immuno-Osseous Dysplasia: Single-Centre Retrospective Study of 21 Unrelated Paediatric Patients over a Period of 20 Years
by Anastasiia Milovanova, Petr Ananin, Tatiana Vashurina, Olga Zrobok, Svetlana Dmitrienko, Alla Ryaposova, Elena Tsygina, Alexander Pushkov, Ilya Zhanin, Daria Chudakova, Aliy Asanov, Olga Shchagina, Aleksander Polyakov, Andrey Fisenko, Kirill Savostyanov and Alexey Tsygin
Int. J. Mol. Sci. 2025, 26(4), 1744; https://doi.org/10.3390/ijms26041744 - 18 Feb 2025
Viewed by 1056
Abstract
Schimke immuno-osseous dysplasia (SIOD) is a hereditary autosomal-recessive multi-system disorder with early mortality. It has variable clinical presentations, mainly characterised by disproportional short stature, steroid-resistant nephrotic syndrome, spondyloepiphyseal dysplasia, and T-cell immunodeficiency. In the majority of cases, SIOD is caused by pathogenic sequence [...] Read more.
Schimke immuno-osseous dysplasia (SIOD) is a hereditary autosomal-recessive multi-system disorder with early mortality. It has variable clinical presentations, mainly characterised by disproportional short stature, steroid-resistant nephrotic syndrome, spondyloepiphyseal dysplasia, and T-cell immunodeficiency. In the majority of cases, SIOD is caused by pathogenic sequence variants (PSVs) in the SMARCAL1 gene that encodes protein involved in chromatin remodelling. SIOD is an ultra-rare condition, with an incidence of ~1 per 1–3 million live births; data on its genetic and clinical features are scarce. We conducted a retrospective study of 21 paediatric patients with SIOD diagnosed in our centre during the years 2003–2023. The most common extra-renal clinical features were short stature, osseous dysplasia, multiple stigmas, and leukopenia. Proteinuria of varying severity was observed in 16 cases. The five-year overall survival rate (OS) was 89% (95% CI 77–100%), and the ten-year OS was 10%. Next-generation sequencing (NGS) revealed the following PSVs in SMARCAL1 in 19 patients: c.355_500del, c.2542G>T, c.2290C>T, c.2562del, c.2533_2534del, c.1582A>C, c.1933C>T, c.1010T>C, c.1736C>T, c.2070dup, c.2551A>T, c.2149_2150dup, c.939delC, and c.1451T>A; the most common was c.2542G>T, resulting in premature translation termination (p.E848*), and it was found in 14 patients either in a homozygous (four patients) or compound-heterozygous (10 patients) state. According to microsatellite analysis, it is a “founder mutation” in Russia. Full article
Show Figures

Figure 1

11 pages, 1231 KiB  
Case Report
Exome Sequencing Reveals Biallelic Mutations in MBTPS1 Gene in a Girl with a Very Rare Skeletal Dysplasia
by Víctor Raggio, Soledad Rodríguez, Sandra Feder, Rosario Gueçaimburú and Lucía Spangenberg
Diagnostics 2024, 14(3), 313; https://doi.org/10.3390/diagnostics14030313 - 31 Jan 2024
Cited by 1 | Viewed by 1953
Abstract
The Kondo-Fu type of spondyloepiphyseal dysplasia (SEDKF) is a rare skeletal dysplasia caused by homozygous or compound heterozygous mutations in the MBTPS1 gene. The MBTPS1 gene encodes a protein that is involved in the regulation of cholesterol and fatty acid metabolism. Mutations in [...] Read more.
The Kondo-Fu type of spondyloepiphyseal dysplasia (SEDKF) is a rare skeletal dysplasia caused by homozygous or compound heterozygous mutations in the MBTPS1 gene. The MBTPS1 gene encodes a protein that is involved in the regulation of cholesterol and fatty acid metabolism. Mutations in MBTPS1 can lead to reduced levels of these lipids, which can have a number of effects on development, including skeletal anomalies, growth retardation, and elevated levels of blood lysosomal enzymes. This work reports the case of a 5-year-old girl with SEDKF. The patient had a severely short stature and a number of skeletal anomalies, including kyphosis, pectus carinatum, and reduced bone mineral density. She also had early onset cataracts and inguinal hernias. Genetic testing revealed two novel compound heterozygous variants in the MBTPS1 gene. These variants are predicted to disrupt the function of the MBTPS1 protein, which is consistent with the patient’s clinical presentation. This case report adds to the growing body of evidence that mutations in the MBTPS1 gene are causal of SEDKF. We summarized the features of previous reported cases (with age ranges from 4 to 24 years) and identified that 80% had low stature, 70% low weight, 80% had bilateral cataracts and 70% showed Spondyloepiphyseal dysplasia on X-rays. The findings of this study suggest that SEDKF is a clinically heterogeneous disorder that can present with a variety of features. Further studies are needed to better understand the underlying mechanisms of SEDKF and to develop more effective treatments. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

11 pages, 7572 KiB  
Case Report
Virtual Surgical Planning, 3D-Printing and Customized Bone Allograft for Acute Correction of Severe Genu Varum in Children
by Giulia Alessandri, Leonardo Frizziero, Gian Maria Santi, Alfredo Liverani, Dante Dallari, Leonardo Vivarelli, Giovanni Luigi Di Gennaro, Diego Antonioli, Grazia Chiara Menozzi, Alessandro Depaoli, Gino Rocca and Giovanni Trisolino
J. Pers. Med. 2022, 12(12), 2051; https://doi.org/10.3390/jpm12122051 - 12 Dec 2022
Cited by 15 | Viewed by 2510
Abstract
Complex deformities of lower limbs are frequent in children with genetic or metabolic skeletal disorders. Early correction is frequently required, but it is technically difficult and burdened by complications and recurrence. Herein, we described the case of a 7-year-old girl affected by severe [...] Read more.
Complex deformities of lower limbs are frequent in children with genetic or metabolic skeletal disorders. Early correction is frequently required, but it is technically difficult and burdened by complications and recurrence. Herein, we described the case of a 7-year-old girl affected by severe bilateral genu varum due to spondyloepiphyseal dysplasia. The patient was treated by patient-specific osteotomies and customized structural wedge allograft using Virtual Surgical Planning (VSP) and 3D-printed patient-specific instrumentation (PSI). The entire process was performed through an in-hospital 3D-printing Point-of-Care (POC). VSP and 3D-printing applied to pediatric orthopedic surgery may allow personalization of corrective osteotomies and customization of structural allografts by using low-cost in-hospital POC. However, optimal and definitive alignment is rarely achieved in such severe deformities in growing skeleton through a single operation. Full article
Show Figures

Figure 1

12 pages, 1788 KiB  
Article
Exome Sequencing Identifies a Biallelic GALNS Variant (p.Asp233Asn) Causing Mucopolysaccharidosis Type IVA in a Pakistani Consanguineous Family
by Saima Ghafoor, Karina da Costa Silveira, Raheel Qamar, Maleeha Azam and Peter Kannu
Genes 2022, 13(10), 1743; https://doi.org/10.3390/genes13101743 - 27 Sep 2022
Cited by 3 | Viewed by 2777
Abstract
Mucopolysaccharidoses (MPS) type IVA is a lysosomal storage disease that mainly affects the skeletal system and is caused by a deficiency of the enzyme N-acetylgalactosamine-6-sulfatase (GALNS). The condition can mistakenly be diagnosed as a primary skeletal dysplasia such as spondylo-epiphyseal dysplasia, which shares [...] Read more.
Mucopolysaccharidoses (MPS) type IVA is a lysosomal storage disease that mainly affects the skeletal system and is caused by a deficiency of the enzyme N-acetylgalactosamine-6-sulfatase (GALNS). The condition can mistakenly be diagnosed as a primary skeletal dysplasia such as spondylo-epiphyseal dysplasia, which shares many similar phenotypic features. Here, we utilised whole exome sequencing to make the diagnosis of MPS IVA in a resource poor country. We report for the first time the identification of a biallelic GALNS missense variant (c.697G>A, p.Asp233Asn) in the Pakistani population and highlight the potential contribution that academic institutions can make in rare disease diagnosis in the absence of a developed clinical genetic service. Full article
(This article belongs to the Special Issue Genetics Studies of Bone Disease)
Show Figures

Figure 1

12 pages, 2031 KiB  
Article
Clinical and Genetic Characteristics of COL2A1-Associated Skeletal Dysplasias in 60 Russian Patients: Part I
by Tatyana Markova, Vladimir Kenis, Evgeniy Melchenko, Darya Osipova, Tatyana Nagornova, Anna Orlova, Ekaterina Zakharova, Elena Dadali and Sergey Kutsev
Genes 2022, 13(1), 137; https://doi.org/10.3390/genes13010137 - 13 Jan 2022
Cited by 8 | Viewed by 4602
Abstract
The significant variability in the clinical manifestations of COL2A1-associated skeletal dysplasias makes it necessary to conduct a clinical and genetic analysis of individual nosological variants, which will contribute to improving our understanding of the pathogenetic mechanisms and prognosis. We presented the clinical and [...] Read more.
The significant variability in the clinical manifestations of COL2A1-associated skeletal dysplasias makes it necessary to conduct a clinical and genetic analysis of individual nosological variants, which will contribute to improving our understanding of the pathogenetic mechanisms and prognosis. We presented the clinical and genetic characteristics of 60 Russian pediatric patients with type II collagenopathies caused by previously described and newly identified variants in the COL2A1 gene. Diagnosis confirmation was carried out by new generation sequencing of the target panel with subsequent validation of the identified variants using automated Sanger sequencing. It has been shown that clinical forms of spondyloepiphyseal dysplasias predominate in childhood, both with more severe clinical manifestations (58%) and with unusual phenotypes of mild forms with normal growth (25%). However, Stickler syndrome, type I was less common (17%). In the COL2A1 gene, 28 novel variants were identified, and a total of 63% of the variants were found in the triple helix region resulted in glycine substitution in Gly-XY repeats, which were identified in patients with clinical manifestations of congenital spondyloepiphyseal dysplasia with varying severity, and were not found in Stickler syndrome, type I and Kniest dysplasia. In the C-propeptide region, five novel variants leading to the development of unusual phenotypes of spondyloepiphyseal dysplasia have been identified. Full article
(This article belongs to the Special Issue Genetic Disorders of Bone)
Show Figures

Figure 1

11 pages, 1682 KiB  
Article
New Insights on the Genetic Basis Underlying SHILCA Syndrome: Characterization of the NMNAT1 Pathological Alterations Due to Compound Heterozygous Mutations and Identification of a Novel Alternative Isoform
by Víctor Abad-Morales, Ana Wert, María Ángeles Ruiz Gómez, Rafael Navarro and Esther Pomares
Int. J. Mol. Sci. 2021, 22(5), 2262; https://doi.org/10.3390/ijms22052262 - 24 Feb 2021
Cited by 6 | Viewed by 3619
Abstract
This study aims to genetically characterize a two-year-old patient suffering from multiple systemic abnormalities, including skeletal, nervous and developmental involvements and Leber congenital amaurosis (LCA). Genetic screening by next-generation sequencing identified two heterozygous pathogenic variants in nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) [...] Read more.
This study aims to genetically characterize a two-year-old patient suffering from multiple systemic abnormalities, including skeletal, nervous and developmental involvements and Leber congenital amaurosis (LCA). Genetic screening by next-generation sequencing identified two heterozygous pathogenic variants in nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) as the molecular cause of the disease: c.439+5G>T and c.299+526_*968dup.This splice variant has never been reported to date, whereas pathogenic duplication has recently been associated with cases displaying an autosomal recessive disorder that includes a severe form of spondylo-epiphyseal dysplasia, sensorineural hearing loss, intellectual disability and LCA (SHILCA), as well as some brain anomalies. Our patient presented clinical manifestations which correlated strongly with this reported syndrome. To further study the possible transcriptional alterations resulting from these mutations, mRNA expression assays were performed in the patient and her father. The obtained results detected aberrant alternative transcripts and unbalanced levels of expression, consistent with severe systemic involvement. Moreover, these analyses also detected a novel NMNAT1 isoform, which is variably expressed in healthy human tissues. Altogether, these findings represent new evidence of the correlation of NMNAT1 and SHILCA syndrome, and provide additional insights into the healthy and pathogenic expression of this gene. Full article
(This article belongs to the Special Issue Inherited Retinal Diseases)
Show Figures

Figure 1

7 pages, 409 KiB  
Review
Morquio B Disease. Disease Characteristics and Treatment Options of a Distinct GLB1-Related Dysostosis Multiplex
by Nataliya Yuskiv, Katsumi Higaki and Sylvia Stockler-Ipsiroglu
Int. J. Mol. Sci. 2020, 21(23), 9121; https://doi.org/10.3390/ijms21239121 - 30 Nov 2020
Cited by 16 | Viewed by 3581
Abstract
Morquio B disease (MBD) is an autosomal recessive GLB1-gene-related lysosomal storage disease, presenting with a peculiar type of dysostosis multiplex which is also observed in GALNS-related Morquio A disease. MBD may present as pure skeletal phenotype (pure MBD) or [...] Read more.
Morquio B disease (MBD) is an autosomal recessive GLB1-gene-related lysosomal storage disease, presenting with a peculiar type of dysostosis multiplex which is also observed in GALNS-related Morquio A disease. MBD may present as pure skeletal phenotype (pure MBD) or in combination with the neuronopathic manifestations seen in type 2 (juvenile) or type 3 (late onset) GM1 gangliosidosis (MBD plus). The main skeletal features are progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly and odontoid hypoplasia. The main neuronopathic features are dystonia, ataxia, and intellectual/developmental/speech delay. Spinal cord compression occurs as a complication of spinal dysostosis. Chronic pain is reported, along with mobility issues and challenges with daily living and self-care activities, as the most common health concern. The most commonly reported orthopedic surgeries are hip and knee replacements. Keratan sulphate-derived oligosaccharides are characteristic biomarkers. Residual β-galactosidase activities measured against synthetic substrates do not correlate with the phenotype. W273 L and T500A are the most frequently observed GLB1 variants in MBD, W273L being invariably associated with pure MBD. Cytokines play a role in joint destruction and pain, providing a promising treatment target. In the future, patients may benefit from small molecule therapies, and gene and enzyme replacement therapies, which are currently being developed for GM1 gangliosidosis. Full article
(This article belongs to the Special Issue Mucopolysaccharidoses: Diagnosis, Treatment, and Management 2.0)
Show Figures

Figure 1

17 pages, 2528 KiB  
Article
Impact of Arginine to Cysteine Mutations in Collagen II on Protein Secretion and Cell Survival
by Salin A. Chakkalakal, Juliane Heilig, Ulrich Baumann, Mats Paulsson and Frank Zaucke
Int. J. Mol. Sci. 2018, 19(2), 541; https://doi.org/10.3390/ijms19020541 - 11 Feb 2018
Cited by 21 | Viewed by 5516
Abstract
Inherited point mutations in collagen II in humans affecting mainly cartilage are broadly classified as chondrodysplasias. Most mutations occur in the glycine (Gly) of the Gly-X-Y repeats leading to destabilization of the triple helix. Arginine to cysteine substitutions that occur at either the [...] Read more.
Inherited point mutations in collagen II in humans affecting mainly cartilage are broadly classified as chondrodysplasias. Most mutations occur in the glycine (Gly) of the Gly-X-Y repeats leading to destabilization of the triple helix. Arginine to cysteine substitutions that occur at either the X or Y position within the Gly-X-Y cause different phenotypes like Stickler syndrome and congenital spondyloepiphyseal dysplasia (SEDC). We investigated the consequences of arginine to cysteine substitutions (X or Y position within the Gly-X-Y) towards the N and C terminus of the triple helix. Protein expression and its secretion trafficking were analyzed. Substitutions R75C, R134C and R704C did not alter the thermal stability with respect to wild type; R740C and R789C proteins displayed significantly reduced melting temperatures (Tm) affecting thermal stability. Additionally, R740C and R789C were susceptible to proteases; in cell culture, R789C protein was further cleaved by matrix metalloproteinases (MMPs) resulting in expression of only a truncated fragment affecting its secretion and intracellular retention. Retention of misfolded R740C and R789C proteins triggered an ER stress response leading to apoptosis of the expressing cells. Arginine to cysteine mutations towards the C-terminus of the triple helix had a deleterious effect, whereas mutations towards the N-terminus of the triple helix (R75C and R134C) and R704C had less impact. Full article
(This article belongs to the Special Issue Extracellular Matrix in Development and Disease)
Show Figures

Figure 1

17 pages, 2378 KiB  
Article
Structural Variations in Articular Cartilage Matrix Are Associated with Early-Onset Osteoarthritis in the Spondyloepiphyseal Dysplasia Congenita (Sedc) Mouse
by David W. Macdonald, Ryan S. Squires, Shaela A. Avery, Jason Adams, Melissa Baker, Christopher R. Cunningham, Nicholas B. Heimann, David L. Kooyman and Robert E. Seegmiller
Int. J. Mol. Sci. 2013, 14(8), 16515-16531; https://doi.org/10.3390/ijms140816515 - 9 Aug 2013
Cited by 14 | Viewed by 11027
Abstract
Heterozgyous spondyloepiphyseal dysplasia congenita (sedc/+) mice expressing a missense mutation in col2a1 exhibit a normal skeletal morphology but early-onset osteoarthritis (OA). We have recently examined knee articular cartilage obtained from homozygous (sedc/sedc) mice, which express a Stickler-like phenotype including [...] Read more.
Heterozgyous spondyloepiphyseal dysplasia congenita (sedc/+) mice expressing a missense mutation in col2a1 exhibit a normal skeletal morphology but early-onset osteoarthritis (OA). We have recently examined knee articular cartilage obtained from homozygous (sedc/sedc) mice, which express a Stickler-like phenotype including dwarfism. We examined sedc/sedc mice at various levels to better understand the mechanistic process resulting in OA. Mutant sedc/sedc, and control (+/+) cartilages were compared at two, six and nine months of age. Tissues were fixed, decalcified, processed to paraffin sections, and stained with hematoxylin/eosin and safranin O/fast green. Samples were analyzed under the light microscope and the modified Mankin and OARSI scoring system was used to quantify the OA-like changes. Knees were stained with 1C10 antibody to detect the presence and distribution of type II collagen. Electron microscopy was used to study chondrocyte morphology and collagen fibril diameter. Compared with controls, mutant articular cartilage displayed decreased fibril diameter concomitant with increases in size of the pericellular space, Mankin and OARSI scores, cartilage thickness, chondrocyte clustering, proteoglycan staining and horizontal fissuring. In conclusion, homozygous sedc mice are subject to early-onset knee OA. We conclude that collagen in the mutant’s articular cartilage (both heterozygote and homozygote) fails to provide the normal meshwork required for matrix integrity and overall cartilage stability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop