Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = spin-paired dimer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3433 KiB  
Article
Comprehensively Understanding the Transformation of Paramagnetic Tetramer to Spin-Paired Dimer in an S = ½ Molecular Crystal
by Yin Qian, Yan Gao, Lei Xu, Reinhard K. Kremer, Jin Zhang and Xiao-Ming Ren
Magnetochemistry 2025, 11(2), 8; https://doi.org/10.3390/magnetochemistry11020008 - 24 Jan 2025
Viewed by 1211
Abstract
In this study, we comparatively analyzed the variable-temperature crystal structures for two isomorphous salts, [1-benzyl-4-aminopyridinium][M(mnt)2] (M = Ni or Cu; mnt2− = maleonitriledithiolate; labeled as APy-Ni or APy-Cu). Both salts crystallize in the triclinic P–1 space group at [...] Read more.
In this study, we comparatively analyzed the variable-temperature crystal structures for two isomorphous salts, [1-benzyl-4-aminopyridinium][M(mnt)2] (M = Ni or Cu; mnt2− = maleonitriledithiolate; labeled as APy-Ni or APy-Cu). Both salts crystallize in the triclinic P–1 space group at 296 K, comprising linear [M(mnt)2] (M = Ni or Cu) tetramers. A magnetostructural phase transition occurs at TC~190 K in S = ½ APy-Ni at ambient pressure, with a conversion of paramagnetic tetramers into nonmagnetic spin-paired dimers. The discontinuous alteration of cell parameters at TC signifies the characteristic of first-order phase transition in APy-Ni. No such transition appears in the nonmagnetic APy-Cu within the same temperature vicinity, demonstrating the magnetic interactions promoting the structural phase transition in APy-Ni, which is further reinforced through a comparison of the lattice formation energy between APy-Ni and APy-Cu. The phase transition may bear a resemblance to the mechanisms typically observed in spin-Peierls systems. We further explored the magnetic and phase transition properties of APy-Ni under varying pressures. Significantly, TC shows a linear increase with rising pressure within the range of 0.003–0.88 GPa, with a rate of 90 K GPa−1, manifesting that the applied pressure promotes the transition from tetramer to dimer. Full article
Show Figures

Figure 1

14 pages, 67989 KiB  
Article
Polarization-Addressable Optical Movement of Plasmonic Nanoparticles and Hotspot Spin Vortices
by Sergio Balestrieri, Silvia Romano, Mario Iodice, Giuseppe Coppola and Gianluigi Zito
Nanomaterials 2024, 14(10), 829; https://doi.org/10.3390/nano14100829 - 9 May 2024
Viewed by 1576
Abstract
Spin–orbit coupling in nanoscale optical fields leads to the emergence of a nontrivial spin angular momentum component, transverse to the orbital momentum. In this study, we initially investigate how this spin–orbit coupling effect influences the dynamics in gold monomers. We observe that localized [...] Read more.
Spin–orbit coupling in nanoscale optical fields leads to the emergence of a nontrivial spin angular momentum component, transverse to the orbital momentum. In this study, we initially investigate how this spin–orbit coupling effect influences the dynamics in gold monomers. We observe that localized surface plasmon resonance induces self-generated transverse spin, affecting the trajectory of the nanoparticles as a function of the incident polarization. Furthermore, we investigate the spin–orbit coupling in gold dimers. The resonant spin momentum distribution is characterized by the unique formation of vortex and anti-vortex spin angular momentum pairs on opposite surfaces of the nanoparticles, also affecting the particle motion. These findings hold promise for various fields, particularly for the precision control in the development of plasmonic thrusters and the development of metasurfaces and other helicity-controlled system aspects. They offer a method for the development of novel systems and applications in the realm of spin optics. Full article
(This article belongs to the Special Issue Optical Composites, Nanophotonics and Metamaterials)
Show Figures

Figure 1

11 pages, 1098 KiB  
Article
Ab Initio Study on the Vibrational and Electronic Properties of Radiation-Induced Defects in Potassium Bromide
by Alexander Platonenko, Vladimir Pankratov, Eugene A. Kotomin, Alma Dauletbekova and Anatoli I. Popov
Crystals 2024, 14(2), 161; https://doi.org/10.3390/cryst14020161 - 2 Feb 2024
Viewed by 1739
Abstract
The vibrational and electronic properties of several basic radiation defects in potassium bromide are computed at the quantum mechanical level using a periodic supercell approach based on hybrid functionals, an all-electron Gaussian-type basis set, and the Crystalcomputer code. The exciton energy in [...] Read more.
The vibrational and electronic properties of several basic radiation defects in potassium bromide are computed at the quantum mechanical level using a periodic supercell approach based on hybrid functionals, an all-electron Gaussian-type basis set, and the Crystalcomputer code. The exciton energy in alkali halides is sufficient to create lattice defects, such as F–H Frenkel defect pairs, resulting in a relatively high concentration of single defects and their complexes. Here, we consider eight defects: the electronic F+- and F-centers (bromine vacancy without and with trapped electrons) and their dimers; hole H-center (neutral bromine atom forming the dumbbell ion with a regular Br ion.); VK-center (Br2 molecular ion consisting of a hole and two regular ions); and two complex Br3 defects, combinations of several simple defects. The local geometry and the charge- and spin-density distributions of all defects are analyzed. Every defect shows its characteristic features in Raman spectra, and their comparison with available experimental data is discussed. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

20 pages, 7335 KiB  
Article
Valence Tautomerism in Chromium Half-Sandwich Triarylmethylium Dyads
by Anja Rehse, Michael Linseis, Mykhailo Azarkh, Malte Drescher and Rainer F. Winter
Inorganics 2023, 11(11), 448; https://doi.org/10.3390/inorganics11110448 - 20 Nov 2023
Viewed by 2371
Abstract
Valence tautomerism (VT) may occur if a molecule contains two chemically different redox-active units, which differ only slightly in their intrinsic redox potential. Herein, we present three new half-sandwich complexes [(η6-arene)Cr(CO)2L]+ with a triarylmethylium substituent appended to [...] Read more.
Valence tautomerism (VT) may occur if a molecule contains two chemically different redox-active units, which differ only slightly in their intrinsic redox potential. Herein, we present three new half-sandwich complexes [(η6-arene)Cr(CO)2L]+ with a triarylmethylium substituent appended to the π-coordinated arene and different coligands L (L = CO, P(OPh)3, PPh3, 1+3+) at the chromium atom. Ligand substitution purposefully lowers the half-wave potential for chromium oxidation and thereby the redox potential difference towards tritylium reduction. For the PPh3-substituted complex 3+, cyclic voltammetry measurements indicate that chromium oxidation and tritylium reduction occur at (almost) the same potential. This renders the diamagnetic Cr(0)-C6H4-CAr2+ form 3+, and its paramagnetic diradical Cr(I)+•-C6H4-CAr2 valence tautomer 3+•• energetically nearly degenerate. Temperature-dependent IR spectroscopy indeed shows two pairs of carbonyl bands that are assignable to a Cr(0) and a Cr(I) species, coexisting in a T-dependent equilibrium with almost equal quantities for both at −70 °C. The diradical form with one unpaired spin at the trityl unit engages in a monomer ⇌ dimer equilibrium, which was investigated by means of quantitative EPR spectroscopy. The diradical species 1+••3+•• were found to be highly reactive, leading to several identified reaction products, which presumably result from hydrogen atom abstraction via the trityl C atom, e.g., from the solvent. Full article
(This article belongs to the Special Issue 10th Anniversary of Inorganics: Organometallic Chemistry)
Show Figures

Graphical abstract

28 pages, 11012 KiB  
Review
N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics
by Mahmoud E. Farahat and Gregory C. Welch
Colorants 2023, 2(1), 151-178; https://doi.org/10.3390/colorants2010011 - 21 Mar 2023
Cited by 15 | Viewed by 3476
Abstract
This work covers the development of non-fullerene acceptors for use in organic photovoltaics built using the N-annulated perylene diimide dye. The classic perylene diimide dye has been extensively used to construct non-fullerene acceptors, leading to device power conversion efficiencies of over 10%. Strong [...] Read more.
This work covers the development of non-fullerene acceptors for use in organic photovoltaics built using the N-annulated perylene diimide dye. The classic perylene diimide dye has been extensively used to construct non-fullerene acceptors, leading to device power conversion efficiencies of over 10%. Strong visible light absorption and deep frontier molecular energy levels have made such materials (both molecular and polymeric) near ideal for pairing with narrow-gap conjugated polymers in bulk-heterojunction active layers. The N-annulation of the dye provides an extra site for side-chain engineering and alters the electronic structure of the polycyclic aromatic core. In addition, N-annulation allows for selective bromination of the perylene core, leading to building blocks that are useful for the construction of large molecular frameworks using the atom-economical direct heteroarylation cross-coupling method. Herein, we detail a series of molecules developed by our team that are based on the N-annulated perylene diimide in the form of dimers with different cores (both electron-rich and electron-deficient); dimers with varied side chains; tetramers with varying geometries; and large, asymmetric molecules with internal energy cascades. The use of these molecules as non-fullerene acceptors in organic photovoltaic devices (binary and ternary blends, outdoor and indoor light applications, and spin-coated vs. slot-die-coated photoactive layers) is presented. Full article
(This article belongs to the Special Issue Recent Progress on Functional Dyes and Their Applications)
Show Figures

Figure 1

12 pages, 5411 KiB  
Article
The Various Packing Structures of Tb@C82 (I, II) Isomers in Their Cocrystals with Ni(OEP)
by Wei Dong, Qin Zhou, Wangqiang Shen, Le Yang, Peng Jin, Xing Lu and Yongfu Lian
Nanomaterials 2023, 13(6), 994; https://doi.org/10.3390/nano13060994 - 9 Mar 2023
Cited by 4 | Viewed by 1816
Abstract
Soot-containing terbium (Tb)-embedded fullerenes were prepared by evaporation of Tb4O7-doped graphite rods in an electric arc discharge chamber. After 1,2,4-trichlorobenzene extraction of the soot and rotary evaporation of the extract, a solid product was obtained and then dissolved into [...] Read more.
Soot-containing terbium (Tb)-embedded fullerenes were prepared by evaporation of Tb4O7-doped graphite rods in an electric arc discharge chamber. After 1,2,4-trichlorobenzene extraction of the soot and rotary evaporation of the extract, a solid product was obtained and then dissolved into toluene by ultrasonication. Through a three-stage high-pressure liquid chromatographic (HPLC) process, Tb@C82 (I, II) isomers were isolated from the toluene solution of fullerenes and metallofullerenes. With the success of the growth of cocrystals of Tb@C82 (I, II) with Ni(OEP), the molecular structures of Tb@C82 (I) and Tb@C82 (II) were confirmed to be Tb@C2v(9)-C82 and Tb@Cs(6)-C82, respectively, based on crystallographic data from X-ray single-crystal diffraction. Moreover, it was found that Tb@C82 (I, II) isomers demonstrated different packing behaviors in their cocrystals with Ni(OEP). Tb@C2v(9)-C82 forms a 1:1 cocrystal with Ni(OEP), in which Tb@C2v(9)-C82 is aligned diagonally between the Ni(OEP) bilayers to form zigzag chains. In sharp contrast, Tb@Cs(6)-C82 forms a 2:2 cocrystal with Ni(OEP), in which Tb@Cs(6)-C82 forms a centrosymmetric dimer that is aligned linearly with Ni(OEP) pairs to form one-dimensional structures in the a–c lattice plane. In addition, the distance of a Ni atom in Ni(OEP) to the Cs(6)-C82 cage is much shorter than that to the C2v(9)-C82 one, indicative of a stronger π-π interaction between Ni(OEP) and the C82 carbon cage in the cocrystal of Tb@CS(6)-C82 and Ni(OEP). Density functional theory calculations reveal that the regionally selective dimerization of Tb@CS(6)-C82 is the result of a dominant unpaired spin existing on a particular C atom of the CS(6)-C82 cage. Full article
Show Figures

Figure 1

19 pages, 5980 KiB  
Review
Spin-Peierls, Spin-Ladder and Kondo Coupling in Weakly Localized Quasi-1D Molecular Systems: An Overview
by Jean-Paul Pouget
Magnetochemistry 2023, 9(2), 57; https://doi.org/10.3390/magnetochemistry9020057 - 13 Feb 2023
Cited by 6 | Viewed by 2554
Abstract
We review the magneto-structural properties of electron–electron correlated quasi-one- dimensional (1D) molecular organics. These weakly localized quarter-filled metallic-like systems with pronounced spin 1/2 antiferromagnetic (AF) interactions in stack direction exhibit a spin charge decoupling where magnetoelastic coupling picks up spin 1/2 to pair [...] Read more.
We review the magneto-structural properties of electron–electron correlated quasi-one- dimensional (1D) molecular organics. These weakly localized quarter-filled metallic-like systems with pronounced spin 1/2 antiferromagnetic (AF) interactions in stack direction exhibit a spin charge decoupling where magnetoelastic coupling picks up spin 1/2 to pair into S = 0 singlet dimers. This is well illustrated by the observation of a spin-Peierls (SP) instability in the (TMTTF)2X Fabre salts and related salts with the o-DMTTF donor. These instabilities are revealed by the formation of a pseudo-gap in the spin degrees of freedom triggered by the development of SP structural correlations. The divergence of these 1D fluctuations, together with the interchain coupling, drive a 3D-SP ground state. More surprisingly, we show that the Per2-M(mnt)2 system, undergoing a Kondo coupling between the metallic Per stack and the dithiolate stack of localized AF coupled spin ½ (for M = Pd, Ni, Pt), enhances the SP instability. Then, we consider the zig-zag spin ladder DTTTF2-M(mnt)2 system, where unusual singlet ground state properties are due to a combination of a 4kF charge localization effect in stack direction and a 2kF SP instability along the zig-zag ladder. Finally, we consider some specific features of correlated 1D systems concerning the coexistence of symmetrically different 4kF BOW and 4kF CDW orders in quarter-filled organics, and the nucleation of solitons in perturbed SP systems. Full article
Show Figures

Figure 1

11 pages, 2610 KiB  
Article
Can the Double Exchange Cause Antiferromagnetic Spin Alignment?
by Andrew Palii, Juan M. Clemente-Juan, Sergey Aldoshin, Denis Korchagin, Evgenii Golosov, Shmuel Zilberg and Boris Tsukerblat
Magnetochemistry 2020, 6(3), 36; https://doi.org/10.3390/magnetochemistry6030036 - 28 Aug 2020
Cited by 7 | Viewed by 3434
Abstract
The effect of the double exchange in a square-planar mixed-valence dn+1dn+1dndn–type tetramers comprising two excess electrons delocalized over four spin cores is discussed. The detailed analysis of a [...] Read more.
The effect of the double exchange in a square-planar mixed-valence dn+1dn+1dndn–type tetramers comprising two excess electrons delocalized over four spin cores is discussed. The detailed analysis of a relatively simple d2d2d1d1–type tetramer shows that in system with the delocalized electronic pair the double exchange is able to produce antiferromagnetic spin alignment. This is drastically different from the customary ferromagnetic effect of the double exchange which is well established for mixed-valence dimers and tetramers with one excess electron or hole. That is why the question “Can double exchange cause antiferromagnetic spin alignment?” became the title of this article. As an answer to this question the qualitative and quantitative study revealed that due to antiparallel directions of spins of the two mobile electrons which give competitive contributions to the overall polarization of spin cores, the system entirely becomes antiferromagnetic. It has been also shown that depending on the relative strength of the second-order double exchange and Heisenberg–Dirac–Van Vleck exchange the system has either the ground localized spin-triplet or the ground delocalized spin-singlet. Full article
(This article belongs to the Special Issue Feature Papers in Magnetochemistry)
Show Figures

Figure 1

20 pages, 631 KiB  
Article
The Influence of Single, Tandem, and Clustered DNA Damage on the Electronic Properties of the Double Helix: A Theoretical Study
by Bolesław T. Karwowski
Molecules 2020, 25(14), 3126; https://doi.org/10.3390/molecules25143126 - 8 Jul 2020
Cited by 10 | Viewed by 2536
Abstract
Oxidatively generated damage to DNA frequently appears in the human genome as the effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents, such as ionization radiation. In this paper, the electronic properties of single, tandem, and clustered DNA [...] Read more.
Oxidatively generated damage to DNA frequently appears in the human genome as the effect of aerobic metabolism or as the result of exposure to exogenous oxidizing agents, such as ionization radiation. In this paper, the electronic properties of single, tandem, and clustered DNA damage in comparison with native ds-DNA are discussed as a comparative analysis for the first time. A single lesion—8-oxo-7,8-dihydro-2′-deoxyguanosine (Goxo), a tandem lesion—(5′S) and (5′R) 5′,8-cyclo-2′-deoxyadenosine (cdA), and the presence of both of them in one helix turn as clustered DNA damage were chosen and taken into consideration. The lowest vertical and adiabatic potential (VIP ~ 5.9 and AIP ~ 5.5 eV, respectively) were found for Goxo, independently of the discussed DNA lesion type and their distribution within the double helix. Moreover, the VIP and AIP were assigned for ds-trimers, ds- dimers and single base pairs isolated from parental ds-hexamers in their neutral and cationic forms. The above results were confirmed by the charge and spin density population, which revealed that Goxo can be considered as a cation radical point of destination independently of the DNA damage type (single, tandem, or clustered). Additionally, the different influences of cdA on the charge transfer rate were found and discussed in the context of tandem and clustered lesions. Because oligonucleotide lesions are effectively produced as a result of ionization factors, the presented data in this article might be valuable in developing a new scheme of anticancer radiotherapy efficiency. Full article
Show Figures

Figure 1

10 pages, 1706 KiB  
Article
Influence of Molecular Orbitals on Magnetic Properties of FeO2Hx
by Alexey O. Shorikov, Sergey L. Skornyakov, Vladimir I. Anisimov, Sergey V. Streltsov and Alexander I. Poteryaev
Molecules 2020, 25(9), 2211; https://doi.org/10.3390/molecules25092211 - 8 May 2020
Cited by 6 | Viewed by 2803
Abstract
Recent discoveries of various novel iron oxides and hydrides, which become stable at very high pressure and temperature, are extremely important for geoscience. In this paper, we report the results of an investigation on the electronic structure and magnetic properties of the hydride [...] Read more.
Recent discoveries of various novel iron oxides and hydrides, which become stable at very high pressure and temperature, are extremely important for geoscience. In this paper, we report the results of an investigation on the electronic structure and magnetic properties of the hydride FeO 2 H x , using density functional theory plus dynamical mean-field theory (DFT+DMFT) calculations. An increase in the hydrogen concentration resulted in the destruction of dimeric oxygen pairs and, hence, a specific band structure of FeO 2 with strongly hybridized Fe- t 2 g -O- p z anti-bonding molecular orbitals, which led to a metallic state with the Fe ions at nearly 3+. Increasing the H concentration resulted in effective mass enhancement growth which indicated an increase in the magnetic moment localization. The calculated static momentum-resolved spin susceptibility demonstrated that an incommensurate antiferromagnetic (AFM) order was expected for FeO 2 , whereas strong ferromagnetic (FM) fluctuations were observed for FeO 2 H. Full article
(This article belongs to the Special Issue Spin Crossover (SCO) Research 2020)
Show Figures

Figure 1

16 pages, 6897 KiB  
Article
Evolution of Spin-Crossover Transition in Hybrid Crystals Involving Cationic Iron Complexes [Fe(III)(3-OMesal2-trien)]+ and Anionic Gold Bis(dithiolene) Complexes Au(dmit)2 and Au(dddt)2
by Nataliya G. Spitsyna, Yuri N. Shvachko, Denis V. Starichenko, Erkki Lahderanta, Anton A. Komlev, Leokadiya V. Zorina, Sergey V. Simonov, Maksim A. Blagov and Eduard B. Yagubskii
Crystals 2018, 8(10), 382; https://doi.org/10.3390/cryst8100382 - 3 Oct 2018
Cited by 6 | Viewed by 4287
Abstract
Hybrid ion-pair crystals involving hexadentate [Fe(III)(3-OMesal2-trien)]+ spin-crossover (SCO) cationic complexes and anionic gold complexes [Au(dmit)2] (1) (dmit = 4,5-dithiolato-1,3-dithiole-2-thione) and [Au(dddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) were synthesized and studied by [...] Read more.
Hybrid ion-pair crystals involving hexadentate [Fe(III)(3-OMesal2-trien)]+ spin-crossover (SCO) cationic complexes and anionic gold complexes [Au(dmit)2] (1) (dmit = 4,5-dithiolato-1,3-dithiole-2-thione) and [Au(dddt)2] (2) (dddt = 5,6-dihydro-1,4-dithiin-2,3-dithiolate) were synthesized and studied by single-crystal X-ray diffraction, P-XRD, and SQUID magnetometry. Our study shows that both complexes have similar 1:1 stoichiometry but different symmetry and crystal packing. Complex 1 has a rigid structure in which the SCO cations are engaged in strong π-interplay with molecular surrounding and does not show SCO transition while 2 demonstrates a reversible transition at Tsco = 118 K in a much “softer”, hydrogen-bonded structure. A new structural indicator of spin state in [Fe(sal2-trien)]+ complexes based on conformational analysis has been proposed. Aging and thermocycling ruined the SCO transition increasing the residual HS fraction from 14 to 41%. Magnetic response of 1 is explained by the AFM coupled dimers S = 5/2 with J1 = −0.18 cm−1. Residual high-spin fraction of 2, apart from a contribution of the weak dimers with J12 = J34 = −0.29 cm−1, is characterized by a stronger interdimer coupling of J23 = −1.69 cm−1, which is discussed in terms of possible involvement of neutral radicals [Au(dddt)2]. Full article
(This article belongs to the Special Issue Synthesis and Applications of New Spin Crossover Compounds)
Show Figures

Graphical abstract

Back to TopTop