Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = spherical and elongated micelles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5000 KB  
Article
Structural Behavior of Amphiphilic Triblock Copolymer P104/Water System
by Edgar Benjamín Figueroa-Ochoa, Lourdes Mónica Bravo-Anaya, Ricardo Vaca-López, Gabriel Landázuri-Gómez, Luis Carlos Rosales-Rivera, Tania Diaz-Vidal, Francisco Carvajal, Emma Rebeca Macías-Balleza, Yahya Rharbi and J. Félix Armando Soltero-Martínez
Polymers 2023, 15(11), 2551; https://doi.org/10.3390/polym15112551 - 31 May 2023
Cited by 2 | Viewed by 2984
Abstract
A detailed study of the different structural transitions of the triblock copolymer PEO27–PPO61–PEO27 (P104) in water, in the dilute and semi-dilute regions, is addressed here as a function of temperature and P104 concentration (CP104) by mean [...] Read more.
A detailed study of the different structural transitions of the triblock copolymer PEO27–PPO61–PEO27 (P104) in water, in the dilute and semi-dilute regions, is addressed here as a function of temperature and P104 concentration (CP104) by mean of complimentary methods: viscosimetry, densimetry, dynamic light scattering, turbidimetry, polarized microscopy, and rheometry. The hydration profile was calculated through density and sound velocity measurements. It was possible to identify the regions where monomers exist, spherical micelle formation, elongated cylindrical micelles formation, clouding points, and liquid crystalline behavior. We report a partial phase diagram including information for P104 concentrations from 1 × 10−4 to 90 wt.% and temperatures from 20 to 75 °C that will be helpful for further interaction studies with hydrophobic molecules or active principles for drug delivery. Full article
(This article belongs to the Special Issue Characterization and Properties of Block Copolymers)
Show Figures

Graphical abstract

22 pages, 6013 KB  
Article
Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design
by Marta Makowska, Paulina Kosikowska-Adamus, Magdalena Zdrowowicz, Dariusz Wyrzykowski, Adam Prahl and Emilia Sikorska
Int. J. Mol. Sci. 2023, 24(4), 3951; https://doi.org/10.3390/ijms24043951 - 16 Feb 2023
Cited by 13 | Viewed by 3755
Abstract
In this paper, we describe the chemical synthesis, preliminary evaluation of antimicrobial properties and mechanisms of action of a novel group of lipidated derivatives of three naturally occurring α-helical antimicrobial peptides, LL-I (VNWKKVLGKIIKVAK-NH2), LK6 (IKKILSKILLKKL-NH2), ATRA-1 (KRFKKFFKKLK-NH2). [...] Read more.
In this paper, we describe the chemical synthesis, preliminary evaluation of antimicrobial properties and mechanisms of action of a novel group of lipidated derivatives of three naturally occurring α-helical antimicrobial peptides, LL-I (VNWKKVLGKIIKVAK-NH2), LK6 (IKKILSKILLKKL-NH2), ATRA-1 (KRFKKFFKKLK-NH2). The obtained results showed that biological properties of the final compounds were defined both by the length of the fatty acid and by the structural and physico-chemical properties of the initial peptide. We consider C8–C12 length of the hydrocarbon chain as the optimal for antimicrobial activity improvement. However, the most active analogues exerted relatively high cytotoxicity toward keratinocytes, with the exception of the ATRA-1 derivatives, which had a higher selectivity for microbial cells. The ATRA-1 derivatives had relatively low cytotoxicity against healthy human keratinocytes but high cytotoxicity against human breast cancer cells. Taking into account that ATRA-1 analogues carry the highest positive net charge, it can be assumed that this feature contributes to cell selectivity. As expected, the studied lipopeptides showed a strong tendency to self-assembly into fibrils and/or elongated and spherical micelles, with the least cytotoxic ATRA-1 derivatives forming apparently smaller assemblies. The results of the study also confirmed that the bacterial cell membrane is the target for the studied compounds. Full article
(This article belongs to the Special Issue Antimicrobial and Antiviral Drugs Discovery)
Show Figures

Figure 1

14 pages, 1738 KB  
Article
Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering
by Oleksandr P. Artykulnyi, Katarina Siposova, Manfred Kriechbaum, Andrey Musatov, László Almásy and Viktor Petrenko
Molecules 2023, 28(4), 1811; https://doi.org/10.3390/molecules28041811 - 14 Feb 2023
Cited by 1 | Viewed by 3619
Abstract
The structure and interaction parameters of the water-soluble cholesterol-based surfactant, Chobimalt, are investigated by small-angle neutron and X-ray scattering techniques. The obtained data are analyzed by a model-independent approach applying the inverse Fourier transformation procedure as well as considering a model fitting procedure, [...] Read more.
The structure and interaction parameters of the water-soluble cholesterol-based surfactant, Chobimalt, are investigated by small-angle neutron and X-ray scattering techniques. The obtained data are analyzed by a model-independent approach applying the inverse Fourier transformation procedure as well as considering a model fitting procedure, using a core-shell form factor and hard-sphere structure factor. The analysis reveals the formation of the polydisperse spherical or moderately elongated ellipsoidal shapes of the Chobimalt micelles with the hard sphere interaction in the studied concentration range 0.17–6.88 mM. The aggregation numbers are estimated from the micelle geometry observed by small-angle scattering and are found to be in the range of 200–300. The low pH of the solution does not have a noticeable effect on the structure of the Chobimalt micelles. The critical micelle concentrations of the synthetic surfactant Chobimalt in water and in H2O-HCl solutions were obtained according to fluorescence measurements as ~3 μM and ~2.5 μM, respectively. In-depth knowledge of the basic structural properties of the detergent micelles is necessary for further applications in bioscience and biotechnology. Full article
(This article belongs to the Special Issue Applications of Micellar Solutions)
Show Figures

Figure 1

31 pages, 9173 KB  
Article
Tunable Polymeric Mixed Micellar Nanoassemblies of Lutrol F127/Gelucire 44/14 for Oral Delivery of Praziquantel: A Promising Nanovector against Hymenolepis nana in Experimentally-Infected Rats
by Waleed M. Arafa, Mohammed H. Elkomy, Heba M. Aboud, Mona Ibrahim Ali, Samah S. Abdel Gawad, Shawky M. Aboelhadid, Emad A. Mahdi, Izzeddin Alsalahat and Heba Abdel-Tawab
Pharmaceutics 2022, 14(10), 2023; https://doi.org/10.3390/pharmaceutics14102023 - 23 Sep 2022
Cited by 15 | Viewed by 3320
Abstract
Hymenolepiasis represents a parasitic infection of common prevalence in pediatrics with intimidating impacts, particularly amongst immunocompromised patients. The present work aimed to snowball the curative outcomes of the current mainstay of hymenolepiasis chemotherapy, praziquantel (PRZ), through assembly of polymeric mixed micelles (PMMs). Such [...] Read more.
Hymenolepiasis represents a parasitic infection of common prevalence in pediatrics with intimidating impacts, particularly amongst immunocompromised patients. The present work aimed to snowball the curative outcomes of the current mainstay of hymenolepiasis chemotherapy, praziquantel (PRZ), through assembly of polymeric mixed micelles (PMMs). Such innovative nano-cargo could consolidate PRZ hydrosolubility, extend its circulation time and eventually upraise its bioavailability, thus accomplishing a nanoparadigm for hymenolepiasis tackling at lower dose levels. For consummating this goal, PRZ-PMMs were tailored via thin-film hydration technique integrating a binary system of Lutrol F127 and Gelucire 44/14. Box-Behnken design was planned for optimizing the nanoformulation variables employing Design-Expert® software. Also, in Hymenolepis nana-infected rats, the pharmacodynamics of the optimal micellar formulation versus the analogous crude PRZ suspension were scrutinized on the 1st and 3rd days after administration of a single oral dose (12.5 or 25 mg/kg). Moreover, in vitro ovicidal activity of the monitored formulations was estimated utilizing Fuchsin vital stain. Furthermore, the in vivo pharmacokinetics were assessed in rats. The optimum PRZ-PMMs disclosed conciliation between thermodynamic and kinetic stability, high entrapment efficiency (86.29%), spherical nanosized morphology (15.18 nm), and controlled-release characteristics over 24 h (78.22%). 1H NMR studies verified PRZ assimilation within the micellar core. Additionally, the in vivo results highlighted a significant boosted efficacy of PRZ-PMMs manifested by fecal eggs output and worm burden reduction, which was clearly evident at the lesser PRZ dose, besides a reversed effect for the intestinal histological disruptions. At 50 µg/mL, PRZ-PMMs increased the percent of non-viable eggs to 100% versus 47% for crude PRZ, whilst shell destruction and loss of embryo were only clear with the applied nano-cargo. Moreover, superior bioavailability by 3.43-fold with elongated residence time was measured for PRZ-PMMs compared to PRZ suspension. Practically, our results unravel the potential of PRZ-PMMs as an oral promising tolerable lower dose nanoplatform for more competent PRZ mass chemotherapy. Full article
Show Figures

Figure 1

11 pages, 2427 KB  
Article
Tubular Assembly Formation Induced by Leucine Alignment along the Hydrophobic Helix of Amphiphilic Polypeptides
by Mohammed A. Abosheasha, Toru Itagaki, Yoshihiro Ito and Motoki Ueda
Int. J. Mol. Sci. 2021, 22(21), 12075; https://doi.org/10.3390/ijms222112075 - 8 Nov 2021
Cited by 7 | Viewed by 3493
Abstract
The introduction of α-helical structure with a specific helix–helix interaction into an amphipathic molecule enables the determination of the molecular packing in the assembly and the morphological control of peptide assemblies. We previously reported that the amphiphilic polypeptide SL12 with a polysarcosine (PSar) [...] Read more.
The introduction of α-helical structure with a specific helix–helix interaction into an amphipathic molecule enables the determination of the molecular packing in the assembly and the morphological control of peptide assemblies. We previously reported that the amphiphilic polypeptide SL12 with a polysarcosine (PSar) hydrophilic chain and hydrophobic α-helix (l-Leu-Aib)6 involving the LxxxLxxxL sequence, which induces homo-dimerization due to the concave–convex interaction, formed a nanotube with a uniform 80 nm diameter. In this study, we investigated the importance of the LxxxLxxxL sequence for tube formation by comparing amphiphilic polypeptide SL4A4L4 with hydrophobic α-helix (l-Leu-Aib)2-(l-Ala-Aib)2-(l-Leu-Aib)2 and SL12. SL4A4L4 formed spherical vesicles and micelles. The effect of the LxxxLxxxL sequence elongation on tube formation was demonstrated by studying assemblies of PSar-b-(l-Ala-Aib)-(l-Leu-Aib)6-(l-Ala-Aib) (SA2L12A2) and PSar-b-(l-Leu-Aib)8 (SL16). SA2L12A2 formed nanotubes with a uniform 123 nm diameter, while SL16 assembled into vesicles. These results showed that LxxxLxxxL is a necessary and sufficient sequence for the self-assembly of nanotubes. Furthermore, we fabricated a double-layer nanotube by combining two kinds of nanotubes with 80 and 120 nm diameters—SL12 and SA2L12A2. When SA2L12A2 self-assembled in SL12 nanotube dispersion, SA2L12A2 initially formed a rolled sheet, the sheet then wrapped the SL12 nanotube, and a double-layer nanotube was obtained. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

24 pages, 4918 KB  
Article
Micellization Behaviour of Linear and Nonlinear Block Copolymers Based on Poly(n-hexyl isocyanate) in Selective Solvents
by Aggelos Vazaios, Athanasios Touris, Mikel Echeverria, Georgia Zorba and Marinos Pitsikalis
Polymers 2020, 12(8), 1678; https://doi.org/10.3390/polym12081678 - 28 Jul 2020
Cited by 8 | Viewed by 2912
Abstract
Block copolymers have attracted significant scientific and economic interest over the last decades due to their ability to self-assemble into ordered structures both in bulk and in selective solvents. In this work, the self-assembly behaviour of both linear (diblocks, triblocks and pentablocks) and [...] Read more.
Block copolymers have attracted significant scientific and economic interest over the last decades due to their ability to self-assemble into ordered structures both in bulk and in selective solvents. In this work, the self-assembly behaviour of both linear (diblocks, triblocks and pentablocks) and nonlinear (miktoarm stars and a block-graft) copolymers based on poly(n-hexyl isocyanate), PHIC, were studied in selective solvents such as n-heptane and n-dodecane. A variety of experimental techniques, namely static and dynamic light scattering, dilute solution viscometry and atomic force microscopy, were employed to study the micellar structural parameters (e.g., aggregation number, overall micellar size and shape, and core and shell dimensions). The effect of the macromolecular architecture, the molecular weight and the copolymer composition on the self-assembly behaviour was studied. Spherical micelles in equilibrium with clusters were obtained from the block copolymers. Thermally stable, uniform and spherical aggregates were found from the triblock copolymers. The poly(n-hexyl isocyanate)-b-polyisoprene-b-poly(n-hexyl isocyanate),-HIH copolymers tend to adopt closed loop conformation, leading to more elongated cylindrical-type structures upon increasing the concentration. Clustering effects were also reported in the case of the pentablock terpolymers. The topology of the blocks plays an important role, since the poly(n-hexyl isocyanate)-b-polystyrene-b-polyisoprene-b-polystyrene-b-poly(n-hexyl isocyanate), HSISH terpolymer shows intermicellar fusion of spherical micelles, leading to the formation of extended networks. The formation of spherical micelles in equilibrium with clusters was obvious in the case of the miktoarm stars, whereas the block-graft copolymer shows the existence of mainly unimolecular micelles. Full article
(This article belongs to the Special Issue Polymers and Nanomaterials: Interactions and Applications)
Show Figures

Graphical abstract

15 pages, 2394 KB  
Article
Encapsidation of Different Plasmonic Gold Nanoparticles by the CCMV CP
by Ana L. Durán-Meza, Martha I. Escamilla-Ruiz, Xochitl F. Segovia-González, Maria V. Villagrana-Escareño, J. Roger Vega-Acosta and Jaime Ruiz-Garcia
Molecules 2020, 25(11), 2628; https://doi.org/10.3390/molecules25112628 - 5 Jun 2020
Cited by 14 | Viewed by 3924
Abstract
Different types of gold nanoparticles have been synthesized that show great potential in medical applications such as medical imaging, bio-analytical sensing and photothermal cancer therapy. However, their stability, polydispersity and biocompatibility are major issues of concern. For example, the synthesis of gold nanorods, [...] Read more.
Different types of gold nanoparticles have been synthesized that show great potential in medical applications such as medical imaging, bio-analytical sensing and photothermal cancer therapy. However, their stability, polydispersity and biocompatibility are major issues of concern. For example, the synthesis of gold nanorods, obtained through the elongated micelle process, produce them with a high positive surface charge that is cytotoxic, while gold nanoshells are unstable and break down in a few weeks due to the Ostwald ripening process. In this work, we report the self-assembly of the capsid protein (CP) of cowpea chlorotic mottle virus (CCMV) around spherical gold nanoparticles, gold nanorods and gold nanoshells to form virus-like particles (VLPs). All gold nanoparticles were synthesized or treated to give them a negative surface charge, so they can interact with the positive N-terminus of the CP leading to the formation of the VLPs. To induce the protein self-assembly around the negative gold nanoparticles, we use different pH and ionic strength conditions determined from a CP phase diagram. The encapsidation with the viral CP will provide the nanoparticles better biocompatibility, stability, monodispersity and a new biological substrate on which can be introduced ligands toward specific cells, broadening the possibilities for medical applications. Full article
Show Figures

Figure 1

18 pages, 10957 KB  
Article
Design of Cobalt Nanoparticles with Tailored Structural and Morphological Properties via O/W and W/O Microemulsions and Their Deposition onto Silica
by Gabriella Di Carlo, Matteo Lualdi, Anna M. Venezia, Magali Boutonnet and Margarita Sanchez-Dominguez
Catalysts 2015, 5(1), 442-459; https://doi.org/10.3390/catal5010442 - 19 Mar 2015
Cited by 19 | Viewed by 8352
Abstract
Cobalt nanostructures with different size and morphology, i.e., spherical nanoparticles, nanorods, and particles arranged into elongated structures, were prepared using micelles and microemulsions as confined reaction media. The syntheses were carried out using three types of systems: aqueous surfactant solutions, oil-in water [...] Read more.
Cobalt nanostructures with different size and morphology, i.e., spherical nanoparticles, nanorods, and particles arranged into elongated structures, were prepared using micelles and microemulsions as confined reaction media. The syntheses were carried out using three types of systems: aqueous surfactant solutions, oil-in water (O/W), and water-in-oil (W/O) microemulsions. The influence of the surfactant and the precipitating agent used for synthesis was also investigated. For this purpose, cobalt nanostructures were prepared using different non-ionic surfactants, namely Synperonic® 10/6, Pluronic® P123 and a mixture of SPAN 20–TWEEN 80. Three different precipitating agents were used: sodium borohydride, sodium hydroxide, and oxalic acid. Our findings revealed that by changing the type of reaction media as well as the precipitating agent it is possible to modify the shape and size of the cobalt nanostructures. Moreover, the use of O/W microemulsion generates better results in terms of colloidal stability and uniformity of particle size with respect to W/O microemulsion. The different cobalt nanostructures were supported on commercial and mesoporous silica; transmission electron microscopy (TEM) images showed that after deposition the Co nanocrystals remain well dispersed on the silica supports. This behavior suggests their great potential in catalytic applications. Full article
(This article belongs to the Special Issue Synthesis of Nanostructured Catalytic Materials from Microemulsions)
Show Figures

Graphical abstract

Back to TopTop