Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = soot-free fuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 12462 KiB  
Article
Impact of Post-Injection Strategies on Combustion and Emissions in a CTL–Ammonia Dual-Fuel Engine
by Siran Tian, Lina Zhang, Yi Wang and Haozhong Huang
Energies 2025, 18(12), 3077; https://doi.org/10.3390/en18123077 - 11 Jun 2025
Viewed by 472
Abstract
Ammonia is a carbon-free fuel with strong potential for emission reduction. However, its high auto-ignition temperature and low reactivity lead to poor ignitability and unstable combustion. In contrast, coal-to-liquid (CTL) fuel offers high cetane number, low sulfur content, and low aromaticity, making it [...] Read more.
Ammonia is a carbon-free fuel with strong potential for emission reduction. However, its high auto-ignition temperature and low reactivity lead to poor ignitability and unstable combustion. In contrast, coal-to-liquid (CTL) fuel offers high cetane number, low sulfur content, and low aromaticity, making it a clean fuel with excellent ignition performance. Blending CTL with ammonia can effectively compensate for ammonia’s combustion limitations, offering a promising pathway toward low-carbon clean combustion. This study explores the effects of post-injection strategies on combustion and emission characteristics of a CTL–ammonia dual-fuel engine under different levels of ammonia energy fractions (AEFs). Results show that post-injection significantly improves combustion and emission performance by expanding ammonia’s the favorable reactivity range of ammonia and enhancing NH3 oxidation, particularly under moderate AEF conditions (5–10%) where ammonia and CTL demonstrate strong synergy. For emissions, moderate post-injection notably reduces CO at low AEFs, while NOX emissions consistently decrease with increasing post-injection quantity, with greater suppression observed at higher AEFs. Soot emissions are also effectively reduced under post-injection conditions. Although total hydrocarbon (THC) emissions increase due to ammonia’s low reactivity, post-injection mitigates this accumulation trend to some extent, demonstrating overall co-benefits for emission control. Comprehensive evaluation indicates that the combination of 5–10% AEF, 8–12 mg post-injection quantity, and post-injection timing of 10–15 °CA achieves the most favorable balance of combustion efficiency, emissions reduction, and reaction stability, confirming the potential of the CTL–ammonia dual-fuel system for clean and efficient combustion. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

19 pages, 5447 KiB  
Article
A Robust Adaptive Strategy for Diesel Particulate Filter Health Monitoring Using Soot Sensor Data
by Bilal Youssef
Vehicles 2025, 7(2), 39; https://doi.org/10.3390/vehicles7020039 - 29 Apr 2025
Viewed by 641
Abstract
The transportation sector mainly relied on fossil fuel and is one of the major causes of climate change and environmental pollution. Advances in smart sensing technology are paving the way for the development of clean and intelligent vehicles that lead to a more [...] Read more.
The transportation sector mainly relied on fossil fuel and is one of the major causes of climate change and environmental pollution. Advances in smart sensing technology are paving the way for the development of clean and intelligent vehicles that lead to a more sustainable transportation system. In response, the automotive industry is actively engaging in new sensor technologies and innovative control and diagnostic algorithms that improve energy sustainability and reduce vehicle emissions. In particular, recent regulations for diesel vehicles require the integration of smart soot sensors to deal with particulate filter on-board diagnostic (OBD) challenges. Meeting the recent, more stringent OBD requirements will be difficult using traditional diagnostic approaches. This study investigates an advanced diagnostic strategy to assess particulate filter health based on resistive soot sensors and available engine variables. The sensor data are projected to generate a 2D signature that reflects the changes in filtration efficiency. A relevant feature (character) is then extracted from the generated signature that can be transformed into an analytical expression used as an indicator of DPF malfunction. The diagnostic strategy uses an adaptive approach that dynamically adjusts the signature’s characters according to the engine’s operating conditions. A correction factor is calculated using an optimization algorithm based on the integral of engine speed measurements and IMEP set points during each sensor loading period. Different cost functions have been tested and evaluated to improve the diagnostic performance. The proposed adaptive approach is model-free and eliminates the need for subsystem models, iterative algorithms, and extensive calibration procedures. Furthermore, the time-consuming and inaccurate estimation of soot emissions upstream of the DPF is avoided. It was evaluated on a validated numerical platform under NEDC driving conditions with simultaneous dispersions on engine-out soot concentration and soot sensor measurements. The promising results highlight the robustness and superior performance of this approach compared to a diagnostic strategy solely reliant on sensor data. Full article
Show Figures

Figure 1

26 pages, 30007 KiB  
Article
LES and RANS Spray Combustion Analysis of OME3-5 and n-Dodecane
by Frederik Wiesmann, Tuan M. Nguyen, Julien Manin, Lyle M. Pickett, Kevin Wan, Fabien Tagliante and Thomas Lauer
Energies 2024, 17(10), 2265; https://doi.org/10.3390/en17102265 - 8 May 2024
Viewed by 1444
Abstract
Clean-burning oxygenated and synthetic fuels derived from renewable power, so-called e-fuels, are a promising pathway to decarbonize compression–ignition engines. Polyoxymethylene dimethyl ethers (PODEs or OMEs) are one candidate of such fuels with good prospects. Their lack of carbon-to-carbon bonds and high concentration of [...] Read more.
Clean-burning oxygenated and synthetic fuels derived from renewable power, so-called e-fuels, are a promising pathway to decarbonize compression–ignition engines. Polyoxymethylene dimethyl ethers (PODEs or OMEs) are one candidate of such fuels with good prospects. Their lack of carbon-to-carbon bonds and high concentration of chemically bound oxygen effectively negate the emergence of polycyclic aromatic hydrocarbons (PAHs) and even their precursors like acetylene (C2H2), enabling soot-free combustion without the soot-NOx trade-off common for diesel engines. The differences in the spray combustion process for OMEs and diesel-like reference fuels like n-dodecane and their potential implications on engine applications include discrepancies in the observed ignition delay, the stabilized flame lift-off location, and significant deviations in high-temperature flame morphology. For CFD simulations, the accurate modeling and prediction of these differences between OMEs and n-dodecane proved challenging. This study investigates the spray combustion process of an OME3 − 5 mixture and n-dodecane with advanced optical diagnostics, Reynolds-Averaged Navier–Stokes (RANS), and Large-Eddy Simulations (LESs) within a constant-volume vessel. Cool-flame and high-temperature combustion were measured simultaneously via high-speed (50 kHz) imaging with formaldehyde (CH2O) planar laser-induced fluorescence (PLIF) representing the former and line-of-sight OH* chemiluminescence the latter. Both RANS and LES simulations accurately describe the cool-flame development process with the formation of CH2O. However, CH2O consumption and the onset of high-temperature reactions, signaled by the rise of OH* levels, show significant deviations between RANS, LES, and experiments as well as between n-dodecane and OME. A focus is set on the quality of the simulated results compared to the experimentally observed spatial distribution of OH*, especially in OME fuel-rich regions. The influence of the turbulence modeling is investigated for the two distinct ambient temperatures of 900 K and 1200 K within the Engine Combustion Network Spray A setup. The capabilities and limitations of the RANS simulations are demonstrated with the initial cool-flame propagation and periodic oscillations of CH2O formation/consumption during the quasi-steady combustion period captured by the LES. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

19 pages, 3927 KiB  
Article
Soot Monitoring of Gasoline Particulate Filters Using a Radio-Frequency-Based Sensor
by Stefanie Walter, Peter Schwanzer, Gunter Hagen, Hans-Peter Rabl, Markus Dietrich and Ralf Moos
Sensors 2023, 23(18), 7861; https://doi.org/10.3390/s23187861 - 13 Sep 2023
Cited by 3 | Viewed by 1589
Abstract
Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions [...] Read more.
Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions that lead to partial regeneration. As an alternative approach, radio-frequency-based (RF) sensors can accurately measure the soot loading, even under these conditions, by detecting soot through its dielectric properties. However, they face a different challenge as their sensitivity may depend on the engine operation conditions during soot formation. In this article, this influence is evaluated in more detail. Various soot samples were generated on an engine test bench. Their dielectric properties were measured using the microwave cavity perturbation (MCP) method and compared with the corresponding sensitivity of the RF sensor determined on a lab test bench. Both showed similar behavior. The values for the soot samples themselves, however, differed significantly from each other. A way to correct for this cross-sensitivity was found in the influence of exhaust gas humidity on the RF sensor, which can be correlated with the engine load. By evaluating this influence during significant humidity changes, such as fuel cuts, it could be used to correct the influence of the engineon the RF sensor. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 1688 KiB  
Review
Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines
by Chakrapani Nagappan Kowthaman, S. M. Ashrafur Rahman and I. M. R. Fattah
Energies 2023, 16(12), 4679; https://doi.org/10.3390/en16124679 - 13 Jun 2023
Cited by 3 | Viewed by 1645
Abstract
The most effective way to reduce internal combustion engine emissions is to use a sustainable alternative fuel that contains oxygen molecules. Alternative fuels may be used to address a future global energy crisis. Different oxygenated alternative fuels have been investigated in internal combustion [...] Read more.
The most effective way to reduce internal combustion engine emissions is to use a sustainable alternative fuel that contains oxygen molecules. Alternative fuels may be used to address a future global energy crisis. Different oxygenated alternative fuels have been investigated in internal combustion engines. Polyoxymethylene di-methylene ether (PODE), which contains 3–5 CH2O groups, is currently superior in the field of oxygenated fuels due to its physical and chemical properties. Furthermore, using PODE as a fuel does not necessitate any significant engine modifications. When compared to standard diesel fuel, the use of PODE results in near stoichiometric combustion with less hazardous exhaust gas. It also significantly reduces NOx emissions due to the lack of C-to-C bonds. Several articles in the literature were found on the manufacturing and application processes for the production of PODE. However, the current review focuses primarily on simplifying the various production technologies, the physical and chemical properties of PODEn and its advantages and disadvantages in ICEs, PODEn application in internal combustion engines and its characteristics, PODE spray analysis, and measurements of the fuel’s physical and chemical characteristics. This review emphasizes the fact that PODE can be used as a sole fuel or in conjunction with fossil fuels and advanced combustion technologies. Because C-C bonds and higher oxygen molecules are not available, the trade-off relationship between nitrogen oxides and soot production is avoided when PODEn is used as a fuel, and combustion efficiency is significantly improved. Full article
(This article belongs to the Special Issue Internal Combustion Engine: Research and Application)
Show Figures

Figure 1

24 pages, 19417 KiB  
Article
On the Wear Behaviour of Bush Drive Chains: Part II—Performance Screening of Pin Materials and Lubricant Effects
by Florian Summer, Philipp Bergmann and Florian Grün
Lubricants 2023, 11(4), 157; https://doi.org/10.3390/lubricants11040157 - 25 Mar 2023
Cited by 1 | Viewed by 3150
Abstract
In this second part of the paper series, parameter investigations of the tribological system chain pin/bush contact, carried out on a specifically developed pin on bush plate model test technique, are presented. Both the pin material and the lubricant varied widely. In case [...] Read more.
In this second part of the paper series, parameter investigations of the tribological system chain pin/bush contact, carried out on a specifically developed pin on bush plate model test technique, are presented. Both the pin material and the lubricant varied widely. In case of the pin materials, a Cr-N monolayer coating and a Cr-N-Fe-based multilayer coating were investigated. As for the lubricants used, two different performing engine oils from the field were tested as well as fresh oils, some of which were diluted with a soot surrogate (carbon black) and diesel fuel in different amounts. The results show, among other things, that friction and wear performance strongly depend on the combination of pin material and lubricant used. In this context, especially the Cr-N-Fe in combination with the used engine oils showed a high wear resistance and low friction losses compared to the Cr-N reference. In the case of fresh oils with soot, the friction losses were higher but comparable between the pin materials, and a slightly better wear performance of the Cr-N was observed due to an agglomeration effect of the soot surrogate. In general, it was found that especially soot-free oils show clear wear advantages independent of the pin material used. Thus, soot clearly has a wear-promoting component. The investigations of this study suggest that a leading mechanism that is based on a corrosive–abrasive effect in the tested system, but this is more related to the soot surrogate carbon black than engine soot. Full article
(This article belongs to the Special Issue Tribology in Mobility, Volume II)
Show Figures

Figure 1

12 pages, 5415 KiB  
Article
Effects of n-Butanol Addition on the Combustion Characteristics of n-Heptane Counterflow Diffusion Flame at Elevated Pressure
by Yaoyao Ying and Dong Liu
Fire 2022, 5(5), 154; https://doi.org/10.3390/fire5050154 - 30 Sep 2022
Cited by 3 | Viewed by 2533
Abstract
This study focused on the effects of n-butanol addition on the combustion characteristics of n-heptane counterflow diffusion flame under pressures of 1, 3, and 5 atm by a detailed kinetic simulation. The added n-butanol volume fraction ranged from 0 to [...] Read more.
This study focused on the effects of n-butanol addition on the combustion characteristics of n-heptane counterflow diffusion flame under pressures of 1, 3, and 5 atm by a detailed kinetic simulation. The added n-butanol volume fraction ranged from 0 to 50%. The mass averaged velocity of fuel streams was selected to ensure momentum flux balance and was approximately constant for the investigated flames. Flame structures and mole fraction profiles impacted by n-butanol addition for major species, free radicals, and intermediate species were analyzed by concentrating on the formations of soot precursors and oxygenated air pollutants. The results showed that with the addition of n-butanol, the flame temperature decreased and the formation of the main soot precursors such as C2H2 and C6H6 was inhibited. This can be attributed to the reduced rate of production of these species. The flame temperature increased significantly, and the profile moved towards the fuel side with the increasing pressure. Moreover, the production of C2H2 and C6H6 was observably promoted as the pressure increased. The concentrations of free radical H, O, and OH decreased significantly as the pressure increased but slightly decreased with the increasing n-butanol addition, which might have been caused by the chemical effect of n-butanol. Full article
(This article belongs to the Special Issue Premixed and Non-premixed Flame Propagation and Suppression)
Show Figures

Figure 1

Back to TopTop