Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = soil faunal community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5459 KiB  
Article
Forest Development Determines the Compositions and Structures of Soil Invertebrate Communities in Reclaimed Coastal Lands
by Lili Cao, Yuanyuan Li, Xiaoming Zou, Jiajie Cao, Guobing Wang and Honghua Ruan
Forests 2024, 15(12), 2096; https://doi.org/10.3390/f15122096 - 26 Nov 2024
Viewed by 1042
Abstract
Soil fauna is integral to facilitating material cycles, energy flows, and the conservation of biodiversity in terrestrial ecosystems. However, the impacts of forest development on the compositions and structures of soil invertebrates remain uncertain. Here, we assessed the dynamics in abundance and diversity [...] Read more.
Soil fauna is integral to facilitating material cycles, energy flows, and the conservation of biodiversity in terrestrial ecosystems. However, the impacts of forest development on the compositions and structures of soil invertebrates remain uncertain. Here, we assessed the dynamics in abundance and diversity of soil invertebrates across eight successional age stages of Metasequoia glyptostroboides tree plantations (7-, 16-, 21-, 26-, 31-, 36-, 41-, 46-year-old stands) in a reclaimed coastal land in China. We used pitfall traps to collect soil invertebrates and analyzed key soil and litter properties to understand their relationships with the faunal communities. The results revealed that the total abundance of soil invertebrates initially decreased during the young to near-mature stand period (7- to 31-year-old stands), whereas it increased along the age series, from the near-mature to overmature stand period (31- to 46-year-old stands). Specifically, the dynamics showed a U-shaped curve with stand development. Further, there was a significantly negative correlation between the Shannon–Wiener diversity index and the total abundance of soil invertebrates across this plantation chronosequence. The variations in abundance of detritivores were consistent with the total abundance of soil invertebrates during stand development. The abundance and diversity of the soil invertebrates were strongly correlated with the soil environment (e.g., soil organic carbon, litter biomass, and microbial biomass nitrogen). These findings highlight that the compositions and structures of soil invertebrates were significantly altered with M. glyptostroboides stand development. Thus, the management of plantations should consider the abundance and diversity of soil invertebrates and functional groups for improving soil structure and fertility. This provides important insights for studying the interconnection of above- and below-ground plantation ecosystems toward their optimal management. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

13 pages, 2499 KiB  
Article
Soil Moisture and Litter Coverage Drive the Altitude Gradient Pattern of Soil Arthropods in a Low-Elevation Mountain
by Haiming Qin, Jingwen Shang, Qin Qi, Bo Cao, Yong Kong, Yujian Li, Junfeng Chen and Xianfeng Yi
Diversity 2024, 16(5), 263; https://doi.org/10.3390/d16050263 - 27 Apr 2024
Viewed by 1502
Abstract
This study sought to investigate the vertical distribution pattern of the soil faunal community in a low-altitude mountain area. On 8 July 2022, a low hill was selected as the study area, and soil arthropods were collected through traps. The leaf litter, vegetation [...] Read more.
This study sought to investigate the vertical distribution pattern of the soil faunal community in a low-altitude mountain area. On 8 July 2022, a low hill was selected as the study area, and soil arthropods were collected through traps. The leaf litter, vegetation type, and distribution quantity of each sampling site were investigated while the soil faunae were collected. In addition, the soil’s physical and chemical parameters were measured. The results of a one-way ANOVA showed that there were significant differences (p < 0.05) in the soil properties, leaf litter, and plant quantities at different altitudes within the research area. A total of 1086 soil arthropods, belonging to five classes and ten orders, were collected during the study period. The dominant species of soil arthropods at different altitudes were significantly different. The dominant species in low-altitude areas were Armadillidium sp. and Aethus nigritus. However, Eupolyphaga sinensis and Philodromidae were the dominant species in high-altitude areas. The results of a non-metric multidimensional scaling (NMDS) analysis showed that the soil faunae at different altitudes were clustered into two communities: a high-altitude community and a low-altitude community. With the increase in altitude, the species richness of the soil arthropods gradually decreased, and their abundance showed a decreasing trend. A redundancy analysis (RDA) of the soil arthropods and environmental factors showed that soil moisture (p < 0.01), pH (p < 0.01) and defoliation (p < 0.05) had significant effects on the distribution of the soil fauna. The results of a Pearson correlation analysis indicated that different environmental factors had interactive effects on the distribution of the soil arthropods. The quantity and species richness of the soil arthropods in different sample lines were tested using a variance analysis. The results showed that there were significantly smaller quantities of soil arthropods in the sampling line closer to the trekking ladder. This indicates that human tourism, namely mountaineering activities, had a direct impact on the soil fauna. This study can provide a reference for and data support in the development of biodiversity conservation measures for forest parks in low mountain areas. Full article
Show Figures

Figure 1

16 pages, 6173 KiB  
Article
Temperature Mainly Determined the Seasonal Variations in Soil Faunal Communities in Semiarid Areas
by Zhiyong Li, Xi Yang, Wei Long, Ranran Song, Xuchao Zhu, Tongchuan Li, Ming’an Shao, Mingyu Chen and Miao Gan
Land 2024, 13(4), 505; https://doi.org/10.3390/land13040505 - 12 Apr 2024
Viewed by 1528
Abstract
The implementation of the Grain for Green Project has increased vegetation coverage and provided suitable habitats and food resources for soil fauna, thereby promoting the development of soil faunal communities. Studying seasonal variations in soil fauna communities in different vegetation areas can improve [...] Read more.
The implementation of the Grain for Green Project has increased vegetation coverage and provided suitable habitats and food resources for soil fauna, thereby promoting the development of soil faunal communities. Studying seasonal variations in soil fauna communities in different vegetation areas can improve our understanding of the mechanisms that drive soil fauna recovery. We selected five typical artificially restored vegetation habitats, including Populus simonii (POS), Pinus tabulaeformis (PIT), Caragana korshinskii (CAK), Stipa bungeana (STB), and Medicago sativa (MES), and one farmland (Zea mays, FAL) habitat on the Loess Plateau. In this study, soil fauna communities and environmental factors were investigated during spring (May), summer (August), and autumn (November). Among the habitats, the STB habitat had the largest seasonal variation in soil faunal density (from 1173 ind·m−2 in May to 10,743 ind·m−2 in August), and the FAL habitat had the smallest (from 2827 ind·m−2 in August to 5550 ind·m−2 in November). Among the restored vegetation habitats, Acarina (44.89–88.56%) had the highest relative abundance of all taxa. The redundancy analysis (RDA) results showed that among the factors driving seasonal variation in soil animal communities, temperature (47.41%) was the most important, followed by precipitation (22.60%). In addition, the dominant groups, Acarina and Collembola, played an influential role in seasonal variations in soil faunal density. Temperature mainly determined the seasonal variations in soil faunal communities. Seasonal factors should be considered when conducting soil fauna research, as they contribute to biodiversity conservation and regional ecological management in the Loess Plateau. Full article
Show Figures

Graphical abstract

11 pages, 1473 KiB  
Article
Evaluating the Impact of Long-Term Land Use Change and Age since Disturbance on Soil Faunal Diversity
by Felicity Victoria Crotty, Umran Akkan Demirer, Stuart Lee Norris, Wei Liu and Philip James Murray
Forests 2023, 14(9), 1882; https://doi.org/10.3390/f14091882 - 16 Sep 2023
Cited by 2 | Viewed by 2041
Abstract
Soil organisms are the biological drivers of processes and functions that maintain soil properties and ecosystem services. Soil fauna contribute to nutrient turnover, decomposition and other important biogeochemical processes. This investigation assessed the diversity and abundance of soil arthropods (0.1–4 mm) along a [...] Read more.
Soil organisms are the biological drivers of processes and functions that maintain soil properties and ecosystem services. Soil fauna contribute to nutrient turnover, decomposition and other important biogeochemical processes. This investigation assessed the diversity and abundance of soil arthropods (0.1–4 mm) along a chronosequence of land use types covering a relatively small geographical distance but with the same underlying soil type and climatic conditions. The compared habitats and the approximate ages since anthropogenic disturbance were ancient woodland (>200 y), old woodland (<200 y), unimproved semi-natural grassland (>50 y), willow/poplar coppice (>30 y), unimproved permanent pasture (<20 y), improved permanent pasture (<10 y), and recently grazed and reseeded grassland (>2 y), and the soil types of all habitats were the same within a 5 km radius. Land use type and age since anthropogenic disturbance significantly (p < 0.05) influenced the community composition of soil fauna, with richer arthropod communities found in woodlands compared with recently managed grassland. This study has confirmed a significant effect of land use type and age since disturbance on soil faunal diversity and community structure. Full article
(This article belongs to the Special Issue Soil Faunal Diversity and Ecological Functions in Forest Ecosystems)
Show Figures

Figure 1

12 pages, 1981 KiB  
Article
Effects of Naphthalene Application on Soil Fungal Community Structure in a Poplar Plantation in Northern Jiangsu, China
by Xuan Xu, Penghe Cao, Yuchao Wang, Wei Wu, Jiahuan Guo, Jiejie Sun, Xiaoming Zou, Weifeng Wang and Honghua Ruan
Appl. Sci. 2023, 13(9), 5794; https://doi.org/10.3390/app13095794 - 8 May 2023
Cited by 2 | Viewed by 2103
Abstract
The soil food web is essential for the functioning of terrestrial ecosystems. The application of naphthalene is a commonly employed experimental treatment for expelling soil fauna to examine faunal effects on litter decomposition processes, for which is it assumed that naphthalene has negligible [...] Read more.
The soil food web is essential for the functioning of terrestrial ecosystems. The application of naphthalene is a commonly employed experimental treatment for expelling soil fauna to examine faunal effects on litter decomposition processes, for which is it assumed that naphthalene has negligible effects on soil microbial communities. An experiment was conducted to examine the potential soil-fauna-repellent effect of naphthalene application (100 g/m2/month, TR) on a soil fungal community during litter decomposition. The results showed that TR greatly suppressed the abundance and taxonomic richness of soil fauna by 83.7 ± 14.2% and 48.1 ± 17.2%, respectively, and reduced the rates of poplar leaf litter decomposition compared to the control (CK, without naphthalene treatment). Among the fungal communities, the abundance of Thelephorales in the TR soil was suppressed, while the abundance of Capnodiales was stimulated, although TR did not significantly alter the carbon and nitrogen content in the soil microbial biomass nor the diversity of soil fungal communities and the most abundant fungal phylum. Thus, both the suppressed soil arthropod abundance and altered soil fungal community might contribute to the observed slowdown in litter decomposition. These results suggest that naphthalene, as a soil fauna repellent, can alter the abundance of specific taxa in a soil fungal community, thereby impeding the effort to elucidate the contribution of soil fauna to ecosystem functioning (e.g., with respect to litter decomposition). Full article
Show Figures

Figure 1

12 pages, 2363 KiB  
Article
Land-Use Types Influence the Community Composition of Soil Mesofauna in the Coastal Zones of Bohai Bay, China
by Xiaoxue Zheng, Yan Tao, Zhongqiang Wang, Xinchang Kou, Haixia Wang, Shengzhong Wang and Donghui Wu
Diversity 2022, 14(12), 1035; https://doi.org/10.3390/d14121035 - 26 Nov 2022
Cited by 1 | Viewed by 2019
Abstract
Soil faunal communities play key roles in maintaining soil nutrient cycling. Affected by different land-use types, soil environment and soil faunal communities change significantly. However, few studies have focused on the aforementioned observations in coastal zones, which provide suitable habitats for many species [...] Read more.
Soil faunal communities play key roles in maintaining soil nutrient cycling. Affected by different land-use types, soil environment and soil faunal communities change significantly. However, few studies have focused on the aforementioned observations in coastal zones, which provide suitable habitats for many species of concern. Here, we investigated the changes in soil mesofaunal communities under different land-use types, including cotton fields, jujube trees, ash trees, a saline meadow, and wetlands. The variations in land-use types affected the community composition and diversity of soil mesofauna in the coastal zones. The taxa of soil mesofauna had different responses to land-use types in the coastal zones. Isotomidae was regarded as an indicator taxon of the coastal cropland regions. Entomobryidae was considered to be an indicator taxon of coastal artificial trees. Meanwhile, Onychiuridae and three taxa (Brachycera, Armadillidiidae, and Gammaridae) were indicator taxa of the coastal terrestrial ecosystem and the coastal wetland ecosystem, respectively. Thus, we suggested that specific soil mesofaunal taxa were considered to be appropriate bioindicators for land-use types in the coastal zones. The results of this study were helpful to develop guidelines for coastal biodiversity and ecosystem conservation in the future. Full article
(This article belongs to the Special Issue Soil Fauna Diversity under Global Change)
Show Figures

Figure 1

25 pages, 2800 KiB  
Systematic Review
Community Responses to Fire: A Global Meta-Analysis Unravels the Contrasting Responses of Fauna to Fire
by Sydney Moyo
Earth 2022, 3(4), 1087-1111; https://doi.org/10.3390/earth3040063 - 27 Oct 2022
Cited by 6 | Viewed by 4241
Abstract
Globally, wildfires and prescribed fires are becoming more prevalent and are known to affect plant and animals in diverse ecosystems. Understanding the responses of animal communities to fire is a central issue in conservation and a panacea to predicting how fire regimes may [...] Read more.
Globally, wildfires and prescribed fires are becoming more prevalent and are known to affect plant and animals in diverse ecosystems. Understanding the responses of animal communities to fire is a central issue in conservation and a panacea to predicting how fire regimes may affect communities and food webs. Here, a global meta-analysis of 2581 observations extracted from 208 empirical studies were used to investigate the effect of fire on aboveground and belowground fauna (e.g., bacteria, fungi, small mammals, arthropods). Overall, results revealed that fire had a negative effect on biomass, abundance, richness, evenness, and diversity of all faunas. Similarly, when considering wildfires and prescribed fires the data revealed that both fire regimes have negative effects on fauna. Similarly, fire had negative impacts on aboveground and aboveground fauna across most biomes and continents of the world. Moreover, there was little evidence of changes in pH, moisture and soil depth on soil organisms suggesting that other factors may drive community changes following a fire disturbance. Future research in fire ecology should consider the effects of fire across several species and across larger geospatial scales. In addition, fire effects on faunal community structure must be studied under contrasting global fire regimes and in light of the effects of climate change. Full article
Show Figures

Figure 1

18 pages, 4007 KiB  
Article
Long-Term Conservation Tillage Practices Directly and Indirectly Affect Soil Micro-Food Web in a Chinese Mollisol
by Pengxiang Sui, Ruiping Li, Hongbing Zheng, Hao Wang, Ye Yuan, Yang Luo, Jinyu Zheng and Wuren Liu
Agronomy 2022, 12(10), 2356; https://doi.org/10.3390/agronomy12102356 - 29 Sep 2022
Cited by 9 | Viewed by 2781
Abstract
Soil micro-food webs play an essential role in maintaining or improving the stability of agricultural soils, and they can be influenced by tillage. However, little is known with respect to soil microbial and faunal communities and their relationships shaped by long-term tillage practices. [...] Read more.
Soil micro-food webs play an essential role in maintaining or improving the stability of agricultural soils, and they can be influenced by tillage. However, little is known with respect to soil microbial and faunal communities and their relationships shaped by long-term tillage practices. The goal of this study was to investigate the impact of 38 years of no-tillage (NT), subsoil tillage (ST), moldboard plow tillage (MP), and rotary and ridge tillage (CT) practices on soil microbial and faunal communities, and their relationships with soil properties using high-throughput sequencing technology and structural equation modeling (SEM) at 2 soil depths (0–20 cm and 20–40 cm). The results indicate that, after the 38-year (1983–2020) period, the bacterial, fungal, protozoan, and metazoan gene copy numbers under the NT treatment at 0–20 cm were 1.31–6.13 times higher than those under the other treatments. Conversely, the microbial and protozoan alpha diversities were reduced under the NT treatment compared with the CT treatment. However, MP significantly increased microbial and faunal gene copy numbers at 20–40 cm. Moreover, the bacterial community composition remarkably varied relative to the community composition of the fungi and fauna in response to the tillage practices and soil depths. Additionally, the highest and lowest average connectivities of the soil micro-food web networks were observed under the ST and MP treatments, respectively. The SEM demonstrated that tillage practices and soil depths explained 73–98% of the microbial and faunal abundances, diversities, and compositions. Additionally, tillage and depth demonstrated direct quantitative effects and indirect quantitative effects by altering the soil mean weight diameter of aggregates, soil organic carbon, and total nitrogen. Overall, subsoil tillage is recommended as the optimal practice for application in northeast China, and it could improve soil properties and aid in forming a more complex soil micro-food web structure. Full article
Show Figures

Figure 1

12 pages, 3282 KiB  
Article
Positive Effects of Reforestation on the Diversity and Abundance of Soil Fauna in a Landscape Degraded Red Soil Area in Subtropical China
by Huajian Xue, Qiong Wang, Kuncai Mao, Yuanqiu Liu, Xueru Jiang, Philip J. Murray, Lvshui Zhang and Wei Liu
Forests 2022, 13(10), 1596; https://doi.org/10.3390/f13101596 - 29 Sep 2022
Cited by 1 | Viewed by 2840
Abstract
Serious soil degradation due to human intervention in subtropical China has resulted in a series of ecological problems. Soil fauna is an important part of forest soil ecosystems and plays a vital role in the maintenance of soil quality and can sensitively reflect [...] Read more.
Serious soil degradation due to human intervention in subtropical China has resulted in a series of ecological problems. Soil fauna is an important part of forest soil ecosystems and plays a vital role in the maintenance of soil quality and can sensitively reflect the soil disturbances caused by human activities. This study assessed the long-term effects of reforestation on the soil fauna community and underground food web. Soil fauna was sampled from plots in a 30-year reforestation positioning test site. Six reforestation models (the pure Schima superba (Ss) forest, pure Liquidambar formosana (Lf) forest, pure Pinus massoniana (Pm) forest, mixed forest of Lf & Ss, mixed forest of Pm & Ss, and the mixed forest of Lf & Pm) were chosen in Taihe County, southern China. The results found that the mixed vegetation restoration of Lf & Pm significantly improved the soil fauna abundance and biomass when compared with other reforestation models in the degraded red soil region. Acari and Collembola accounted for 65.8% and 23.3%, respectively, of the total soil fauna abundance in the region. The mixed forest of Lf & Pm had a positive effect on the abundance of secondary decomposers and micro predators in Acari. Moreover, a significant increase in the abundance of Collembola was found in the Lf & Pm stand type. The stand type with the highest soil faunal population also had a higher soil fauna biomass. Therefore, reforestation in a degraded red soil area had positive effects on the soil fauna community. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 2195 KiB  
Article
Soil Arthropod Community in Spruce Forests (Picea abies) Affected by a Catastrophic Storm Event
by Cristina Menta, Carlos Lozano Fondón and Sara Remelli
Diversity 2022, 14(6), 440; https://doi.org/10.3390/d14060440 - 30 May 2022
Cited by 4 | Viewed by 2193
Abstract
At the end of October 2018, the “Vaia” storm hit the eastern sector of the Italian Alps, causing major damage to forests. The resulting changes in habitat and resource availability are expected to shape the structure and abundance of soil communities. In this [...] Read more.
At the end of October 2018, the “Vaia” storm hit the eastern sector of the Italian Alps, causing major damage to forests. The resulting changes in habitat and resource availability are expected to shape the structure and abundance of soil communities. In this research, a soil arthropod community is studied one year after the catastrophic Vaia event in forests affected by the storm (W: Windthrow) to highlight the shift in the soil faunal community in a Mediterranean area increasingly impacted by climate change. Intact forests (IF) close to W were studied as a control condition and meadows (M) were considered to understand if W is moving toward a conversion to M or if the wooded character still prevails. Soil organic matter content was higher in IF than in W and M. The arthropod community was different between M and forests, both W and IF, while no differences were detected between W and IF considering the whole soil arthropod community. The Vaia catastrophic event does not appear to have radically changed the soil arthropod community and biodiversity after one year, despite upheaval to the vegetation cover, but the response is partially OTU (operative taxonomic unit)-specific. Hymenoptera adults and Coleoptera and Diptera larvae appear to be the most affected OTUs, showing lower abundance in W than IF. Conversely, Chilopoda seemed to benefit from the habitat changes, the result strongly related with the W condition. The two most present OTUs, Collembola and Acarina, were not affected by the Vaia storm. We may conclude that the soil system needs longer time to show a clear shift in the soil arthropod community. Full article
(This article belongs to the Special Issue State-of-the-Art Mediterranean Soil Arthropods Diversity)
Show Figures

Figure 1

15 pages, 3599 KiB  
Article
Effects of Forest Harvesting Operations on the Recovery of Earthworms and Nematodes in the Hyrcanain Old-Growth Forest: Assessment, Mitigation, and Best Management Practice
by Hadi Sohrabi, Meghdad Jourgholami, Angela Lo Monaco and Rodolfo Picchio
Land 2022, 11(5), 746; https://doi.org/10.3390/land11050746 - 18 May 2022
Cited by 4 | Viewed by 2654
Abstract
The quality and performance of forest soil is closely related to the characteristics of the faunal community in the soil. Focusing on soil organisms can provide good indicators to choose the best soil restoration methods to improve the properties of degraded forest soils. [...] Read more.
The quality and performance of forest soil is closely related to the characteristics of the faunal community in the soil. Focusing on soil organisms can provide good indicators to choose the best soil restoration methods to improve the properties of degraded forest soils. Therefore, the present study aimed to evaluate the effects of the tree litter of different species on the recovery of soil organisms (earthworms and nematodes) from skid trails over a 20-year period after harvest operations. For this purpose, three skid trails with different ages after harvest operations (6, 10, and 20 years), considering three tree litter treatments (beech, beech–hornbeam, and mixed beech) and three traffic intensity classes (low, medium, and high), were identified. The combination of treatments was carried out in the forest with three replications, and a total of 18 sample plots of 0.5 m2 were harvested to measure earthworms and nematodes. The results showed that 20 years after harvest operations, the highest values of earthworm density (5.72 n m−2), earthworm biomass (97.18 mg m−2), and total nematodes (313.65 in 100 g of soil) were obtained in the mixed beech litter treatment compared to other litter treatments. With decreasing traffic intensity from high to low, the activity of soil organisms increased, and the highest values of earthworm density (5.46 n m−2), earthworm biomass (87.21 mg m−2), and soil nematodes (216.33 in 100 g soil) were associated with low traffic intensity. Additionally, in all three litter treatments and traffic intensities, the epigeic ecological species were more abundant than the anecic and endogeic species. Key soil variables including water content, porosity, available nutrients, pH, total organic C, and total N were significantly correlated with earthworm density and biomass and soil nematode population. Litter management and addition to compacted soil can support the functional dynamics and processes of the soil and maintenance of the abundances and activities of the soil fauna. Full article
Show Figures

Figure 1

16 pages, 1313 KiB  
Article
Alien Invasive Plant Effect on Soil Fauna Is Habitat Dependent
by Tania De Almeida, Estelle Forey and Matthieu Chauvat
Diversity 2022, 14(2), 61; https://doi.org/10.3390/d14020061 - 18 Jan 2022
Cited by 14 | Viewed by 4134
Abstract
Invasive alien plants often modify the structure of native plant communities, but their potential impact on soil communities is far less studied. In this study, we looked at the impact of invasive Asian knotweed (Reynoutria spp.) on two major soil mesofauna (Collembola) [...] Read more.
Invasive alien plants often modify the structure of native plant communities, but their potential impact on soil communities is far less studied. In this study, we looked at the impact of invasive Asian knotweed (Reynoutria spp.) on two major soil mesofauna (Collembola) and microfauna (Nematodes) communities. We expected ingress of knotweed to differentially affect faunal groups depending on their trophic position, with the lower trophic levels being more impacted than the higher trophic groups according to the closer relationship to plants for basal trophic groups. Furthermore, we expected the knotweed impact to depend on habitat type (forest vs. meadow) with more pronounced changes in abundances of soil invertebrate in invaded meadows. Plant and soil invertebrates were sampled in six sites (three forest and three meadows) in northern France in both control and invaded plots. Our results showed that the presence of knotweed strongly reduced native plant species’ diversity and abundance. Soil fauna also responded to the invasion by Asian knotweed with different responses, as hypothesized, according to trophic position or life-forms. Furthermore, abundances of several collembolan life-forms were influenced by the interaction between the factors “Habitat” and “Knotweed”. This may explain the difficulty to easily generalize and predict the consequences of plant invasion on belowground diversity, although this is of crucial importance for alleviating negative consequences and costs of biological invasion. Full article
(This article belongs to the Special Issue 2021 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

13 pages, 846 KiB  
Proceeding Paper
The Best of Both Worlds? Hybridization Potentiates Exotic Bohemian Knotweed’s (Reynoutria × bohemica) Impacts on Native Plant and Faunal Communities
by Markus Neupert, Pierre Margerie, Estelle Forey, Matthieu Chauvat, Fabrice Bureau, Michaël Aubert, Stève Prével, Estelle Langlois and Lucie Vincenot
Biol. Life Sci. Forum 2021, 2(1), 20; https://doi.org/10.3390/BDEE2021-09471 - 16 Mar 2021
Cited by 1 | Viewed by 1893
Abstract
The Asian knotweed species complex gathers some of the world’s most successful plant invaders including the Japanese knotweed (Reynoutria japonica), the giant knotweed (R. sachalinensis) and the hybrid of these two species, the Bohemian knotweed (R. × bohemica [...] Read more.
The Asian knotweed species complex gathers some of the world’s most successful plant invaders including the Japanese knotweed (Reynoutria japonica), the giant knotweed (R. sachalinensis) and the hybrid of these two species, the Bohemian knotweed (R. × bohemica). Hybrid species often present higher competitive abilities compared to their parent species. While several studies have focused on the effects of knotweed invasion on plant communities, few have simultaneously considered (i) effects of the three taxa on native plant communities and (ii) effects on litter and soil faunal components. In this study, we compared the differential effects of three Asian knotweeds on vegetation and soil macroinvertebrates communities across seven sites on a regional scale in North Western France. All three knotweed species displayed similar negative effects on local plant species richness, while promoting the taxonomic richness of litter-dwelling macroinvertebrates. Belowground macroinvertebrate taxonomic richness appeared strongly reduced by the presence of the hybrid R. × bohemica, significantly more so than those of sites colonized by R. japonica or R. sachalinensis. These changes of belowground communities were correlated to associated changes of composition and richness within plant communities. This study provides new insight into the consequences of ecosystem invasion by these species, especially revealing the even further strength of impacts of the hybrid Bohemian knotweed on local vegetation and belowground macroinvertebrates than those of other Asian knotweeds, which points to the need for monitoring the spatial spread of R. × bohemica and describing further its effects on ecosystem properties. Full article
Show Figures

Figure 1

12 pages, 1969 KiB  
Article
Biogeographic Changes in Forest Soil Microbial Communities of Offshore Islands—A Case Study of Remote Islands in Taiwan
by Ed-Haun Chang, Isheng Jason Tsai, Shih-Hao Jien, Guanglong Tian and Chih-Yu Chiu
Forests 2021, 12(1), 4; https://doi.org/10.3390/f12010004 - 22 Dec 2020
Cited by 3 | Viewed by 2864
Abstract
Biogeographic separation has been an important cause of faunal and floral distribution; however, little is known about the differences in soil microbial communities across islands. In this study, we determined the structure of soil microbial communities by analyzing phospholipid fatty acid (PLFA) profiles [...] Read more.
Biogeographic separation has been an important cause of faunal and floral distribution; however, little is known about the differences in soil microbial communities across islands. In this study, we determined the structure of soil microbial communities by analyzing phospholipid fatty acid (PLFA) profiles and comparing enzymatic activities as well as soil physio-chemical properties across five subtropical granite-derived and two tropical volcanic (andesite-derived) islands in Taiwan. Among these islands, soil organic matter, pH, urease, and PLFA biomass were higher in the tropical andesite-derived than subtropical granite-derived islands. Principal component analysis of PLFAs separated these islands into three groups. The activities of soil enzymes such as phosphatase, β-glucosidase, and β-glucosaminidase were positively correlated with soil organic matter and total nitrogen. Redundancy analysis of microbial communities and environmental factors showed that soil parent materials and the climatic difference are critical factors affecting soil organic matter and pH, and consequently the microbial community structure. Full article
(This article belongs to the Special Issue Restoring Forest Landscapes: Impact on Soil Properties and Functions)
Show Figures

Figure 1

17 pages, 1824 KiB  
Article
Evaluation of Soil Biodiversity in Alpine Habitats through eDNA Metabarcoding and Relationships with Environmental Features
by Noemi Rota, Claudia Canedoli, Chiara Ferrè, Gentile Francesco Ficetola, Alessia Guerrieri and Emilio Padoa-Schioppa
Forests 2020, 11(7), 738; https://doi.org/10.3390/f11070738 - 7 Jul 2020
Cited by 22 | Viewed by 5980
Abstract
Soil biodiversity is fundamental for ecosystems, ensuring many ecosystem functions, such as nutrient cycling, organic matter decomposition, soil formation, and organic carbon pool increase. Due to these roles, there is a need to study and completely understand how soil biodiversity is composed through [...] Read more.
Soil biodiversity is fundamental for ecosystems, ensuring many ecosystem functions, such as nutrient cycling, organic matter decomposition, soil formation, and organic carbon pool increase. Due to these roles, there is a need to study and completely understand how soil biodiversity is composed through different habitats. The aim of this study was to describe the edaphic soil community of the alpine environments belonging to the Gran Paradiso National Park, thus detecting if there are any correlation with environmental features. We studied soil fauna through environmental DNA metabarcoding. From eDNA metabarcoding, 18 families of arthropods were successfully detected, and their abundance expressed in terms of the relative frequency of sequences. Soil faunal communities of mixed coniferous forests were characterized by Isotomidae, Entomobriydae, Hypogastruridae, and Onychiuridae; while mixed deciduous forests were composed mostly by Isotomidae, Cicadidae, Culicidae, and Neelidae. Calcicolous and acidic grasslands also presented families that were not detected in forest habitats, in particular Scarabaeidae, Curculionidae, Brachyceridae, and had in general a more differentiated soil community. Results of the Canonical Component Analysis revealed that the main environmental features affecting soil community for forests were related to vegetation (mixed deciduous forests, tree basal area, tree biomass, Shannon index), soil (organic layers and organic carbon stock), and site (altitude); while for prairies, soil pH and slope were also significant in explaining soil community composition. This study provided a description of the soil fauna of alpine habitats and resulted in a description of community composition per habitat and the relation with the characteristic of vegetation, soil, and topographic features of the study area. Further studies are needed to clarify ecological roles and needs of these families and their role in ecosystem functioning. Full article
(This article belongs to the Special Issue Relationship between Forest Biodiversity and Soil Functions)
Show Figures

Figure 1

Back to TopTop