Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = smoothing by spectral dispersion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2443 KB  
Article
Numerical Study on Infrared Radiation Signatures of Debris During Projectile Impact Damage Process
by Wenqiang Gao, Teng Zhang and Qinglin Niu
Computation 2025, 13(10), 244; https://doi.org/10.3390/computation13100244 - 19 Oct 2025
Viewed by 521
Abstract
High-speed impact is a critical mechanism for structural damage. The infrared signatures generated during fragment formation provide essential data for damage assessment, protective system design, and target identification. This study investigated an aluminum alloy blunt projectile penetrating a target plate by employing smoothed [...] Read more.
High-speed impact is a critical mechanism for structural damage. The infrared signatures generated during fragment formation provide essential data for damage assessment, protective system design, and target identification. This study investigated an aluminum alloy blunt projectile penetrating a target plate by employing smoothed particle hydrodynamics to simulate the debris ejection thermal and infrared properties. The infrared signatures of the debris clouds were calculated using Mie scattering theory under a spherical particle approximation. The reverse Monte Carlo methodology was applied to solve the radiative transfer equations and quantify the infrared emission characteristics. The infrared radiation characteristics of the debris cloud were investigated for projectile impact velocities of 800, 1000, and 1200 m/s. The results showed that the anterior debris regions reached peak temperatures of approximately 1200 K, with a temperature rise of 150–200 K per 200 m/s velocity increase behind the target. The medium-wave (3–5 μm) infrared intensity of the debris cloud was higher than the long-wave (8–12 μm) infrared intensity. The development of debris clouds enhanced the dispersion effect and slowed the increase in infrared radiation intensity in the same time interval. This study provides theoretical foundations for the dynamic infrared radiation characteristics of fragments generated by high-velocity projectile impacts. The infrared radiation characteristics within typical spectral bands can be utilized to assess hit probability and kill effectiveness. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

8 pages, 749 KB  
Communication
Numerical Investigation on the Effect of Smoothing by Spectral Dispersion on Transverse Stimulated Raman Scattering Gain in KDP Crystals
by Xinmin Fan, Chunhong Wang, Yan Wang, Jianxin Zhang, Yong Shang, Shun Li, Fuyong Qin, Zaifa Du and Chunyan Wang
Photonics 2025, 12(9), 843; https://doi.org/10.3390/photonics12090843 - 24 Aug 2025
Cited by 1 | Viewed by 908
Abstract
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam [...] Read more.
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam but also damages the KDP crystal, thus significantly limiting the enhancement of ICF laser driver capabilities. Therefore, effectively suppressing TSRS in KDP crystals is a critical issue in the design and construction of ICF laser driver systems. This paper first proposes that SSD has the ability to suppress TSRS through theoretical analysis of the characteristics of SSD beams. Secondly, through numerical simulations, it presents the influence of variations in three key parameters—modulation amplitude, modulation frequency, and grating dispersion coefficient—on the TSRS gain. The results show that the Stokes gain decreases with increasing modulation amplitude and modulation frequency; specifically, the suppression capability of SSD for TSRS gradually strengthens as modulation bandwidth increases. In addition, previous reports have demonstrated that SSD can significantly suppress stimulated rotational Raman scattering (SRRS) in air, which highlights the potential value of applying SSD in large laser facilities such as ICF driver systems. Full article
Show Figures

Figure 1

32 pages, 876 KB  
Article
Physics-Informed Neural Networks and Fourier Methods for the Generalized Korteweg–de Vries Equation
by Rubén Darío Ortiz Ortiz, Ana Magnolia Marín Ramírez and Miguel Ángel Ortiz Marín
Mathematics 2025, 13(9), 1521; https://doi.org/10.3390/math13091521 - 5 May 2025
Cited by 3 | Viewed by 2560
Abstract
We conducted a comprehensive comparative study of numerical solvers for the generalized Korteweg–de Vries (gKdV) equation, focusing on classical Fourier-based Crank–Nicolson methods and physics-informed neural networks (PINNs). Our work benchmarks these approaches across nonlinear regimes—including the cubic case (ν=3)—and [...] Read more.
We conducted a comprehensive comparative study of numerical solvers for the generalized Korteweg–de Vries (gKdV) equation, focusing on classical Fourier-based Crank–Nicolson methods and physics-informed neural networks (PINNs). Our work benchmarks these approaches across nonlinear regimes—including the cubic case (ν=3)—and diverse initial conditions such as solitons, smooth pulses, discontinuities, and noisy profiles. In addition to pure PINN and spectral models, we propose a novel hybrid PINN–spectral method incorporating a regularization term based on Fourier reference solutions, leading to improved accuracy and stability. Numerical experiments show that while spectral methods achieve superior efficiency in structured domains, PINNs provide flexible, mesh-free alternatives for data-driven and irregular setups. The hybrid model achieves lower relative L2 error and better captures soliton interactions. Our results demonstrate the complementary strengths of spectral and machine learning methods for nonlinear dispersive PDEs. Full article
(This article belongs to the Special Issue Asymptotic Analysis and Applications)
Show Figures

Figure 1

10 pages, 1127 KB  
Article
Sc/SiC/Al Multilayer Optimization for Li K Spectroscopy
by Khalil Hassebi, Evgueni Meltchakov, Franck Delmotte, Angelo Giglia and Philippe Jonnard
Appl. Sci. 2024, 14(3), 956; https://doi.org/10.3390/app14030956 - 23 Jan 2024
Cited by 2 | Viewed by 1938
Abstract
This paper presents an X-ray reflectivity study of a Sc/SiC/Al periodic multilayer deposited via magnetron sputtering and its possible adaptation to be used as a dispersive element in the crystal spectrometers equipping scanning electron microscopes and electron probe microanalyzers. This multilayer is designed [...] Read more.
This paper presents an X-ray reflectivity study of a Sc/SiC/Al periodic multilayer deposited via magnetron sputtering and its possible adaptation to be used as a dispersive element in the crystal spectrometers equipping scanning electron microscopes and electron probe microanalyzers. This multilayer is designed for the spectral range of 45–60 eV. The results reveal a reflectance of 40.8% at 54.1 eV for a near-normal incidence angle of 7° with a narrow bandwidth of 2.6 eV. The measured and simulated reflectivity curves are very close, suggesting that this system has smooth interfaces and low interdiffusion. Owing to the growing importance of lithium and lack of spectroscopic data, we simulate a new Sc/SiC/Al stack based on the reflectivity data and optimize it to perform spectroscopy in the range near the Li K absorption edge around 55 eV, which is in the spectral range of the Li Kα emission band. This optimization is achieved by tuning the thicknesses of the different layers and the number of periods of the multilayer using an in-house Python script. The optimization results are compared with the performances of other multilayers employed in the same energy range and at a working angle close to 30° grazing, including Be/Si/Al. This analysis indicates that the Sc/SiC/Al multilayer could be a good candidate for performing spectroscopy in the Li K range. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

22 pages, 4782 KB  
Article
Comparing Performance of Spectral Image Analysis Approaches for Detection of Cellular Signals in Time-Lapse Hyperspectral Imaging Fluorescence Excitation-Scanning Microscopy
by Marina Parker, Naga S. Annamdevula, Donald Pleshinger, Zara Ijaz, Josephine Jalkh, Raymond Penn, Deepak Deshpande, Thomas C. Rich and Silas J. Leavesley
Bioengineering 2023, 10(6), 642; https://doi.org/10.3390/bioengineering10060642 - 25 May 2023
Cited by 7 | Viewed by 3050
Abstract
Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While HSI was originally developed for remote sensing applications, modern uses include agriculture, historical document authentication, and medicine. HSI has also shown great utility in [...] Read more.
Hyperspectral imaging (HSI) technology has been applied in a range of fields for target detection and mixture analysis. While HSI was originally developed for remote sensing applications, modern uses include agriculture, historical document authentication, and medicine. HSI has also shown great utility in fluorescence microscopy. However, traditional fluorescence microscopy HSI systems have suffered from limited signal strength due to the need to filter or disperse the emitted light across many spectral bands. We have previously demonstrated that sampling the fluorescence excitation spectrum may provide an alternative approach with improved signal strength. Here, we report on the use of excitation-scanning HSI for dynamic cell signaling studies—in this case, the study of the second messenger Ca2+. Time-lapse excitation-scanning HSI data of Ca2+ signals in human airway smooth muscle cells (HASMCs) were acquired and analyzed using four spectral analysis algorithms: linear unmixing (LU), spectral angle mapper (SAM), constrained energy minimization (CEM), and matched filter (MF), and the performances were compared. Results indicate that LU and MF provided similar linear responses to increasing Ca2+ and could both be effectively used for excitation-scanning HSI. A theoretical sensitivity framework was used to enable the filtering of analyzed images to reject pixels with signals below a minimum detectable limit. The results indicated that subtle kinetic features might be revealed through pixel filtering. Overall, the results suggest that excitation-scanning HSI can be employed for kinetic measurements of cell signals or other dynamic cellular events and that the selection of an appropriate analysis algorithm and pixel filtering may aid in the extraction of quantitative signal traces. These approaches may be especially helpful for cases where the signal of interest is masked by strong cellular autofluorescence or other competing signals. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Imaging)
Show Figures

Figure 1

21 pages, 5755 KB  
Article
An Improved Component-Wise WENO-NIP Scheme for Euler System
by Ruo Li and Wei Zhong
Mathematics 2022, 10(20), 3881; https://doi.org/10.3390/math10203881 - 19 Oct 2022
Cited by 3 | Viewed by 2353
Abstract
As is well known, due to the spectral decomposition of the Jacobian matrix, the WENO reconstructions in the characteristic-wise fashion (abbreviated as CH-WENO) need much higher computational cost and more complicated implementation than their counterparts in the component-wise fashion (abbreviated as CP-WENO). Hence, [...] Read more.
As is well known, due to the spectral decomposition of the Jacobian matrix, the WENO reconstructions in the characteristic-wise fashion (abbreviated as CH-WENO) need much higher computational cost and more complicated implementation than their counterparts in the component-wise fashion (abbreviated as CP-WENO). Hence, the CP-WENO schemes are very popular methods for large-scale simulations or situations whose full characteristic structures cannot be obtained in closed form. Unfortunately, the CP-WENO schemes usually suffer from spurious oscillations badly. The main objective of the present work is to overcome this drawback for the CP-WENO-NIP scheme, whose counterpart in the characteristic-wise fashion was carefully studied and well-validated numerically. The approximated dispersion relation (ADR) analysis is performed to study the spectral property of the CP-WENO-NIP scheme and then a negative-dissipation interval which leads to a high risk of causing spurious oscillations is discovered. In order to remove this negative-dissipation interval, an additional term is introduced to the nonlinear weights formula of the CP-WENO-NIP scheme. The improved scheme is denoted as CP-WENO-INIP. Accuracy test examples indicate that the proposed CP-WENO-INIP scheme can achieve the optimal convergence orders in smooth regions even in the presence of the critical points. Extensive numerical experiments demonstrate that the CP-WENO-INIP scheme is much more robust compared to the corresponding CP-WENO-NIP or even CH-WENO-NIP schemes for both 1D and 2D problems modeled via the Euler equations. Full article
(This article belongs to the Special Issue Numerical Methods for Computational Fluid Dynamics)
Show Figures

Figure 1

13 pages, 2913 KB  
Article
Specific Phase Modulation with Dynamic Variable Spectral Width of Nanosecond Optical Pulse in High-Power Lasers
by Xinlei Qian, Xiaochao Wang, Shouying Xu, Zhuli Xiao, Yue Wang, Shenlei Zhou and Wei Fan
Photonics 2022, 9(8), 586; https://doi.org/10.3390/photonics9080586 - 18 Aug 2022
Viewed by 2494
Abstract
High-power laser pulse transmitted by phase modulation with certain spectrum distribution can suppress the buildup of transverse stimulated Brillouin scattering (TSBS) in large aperture laser optics and smooth the speckle pattern illuminating the target by spectral smoothing dispersion (SSD). In this paper, based [...] Read more.
High-power laser pulse transmitted by phase modulation with certain spectrum distribution can suppress the buildup of transverse stimulated Brillouin scattering (TSBS) in large aperture laser optics and smooth the speckle pattern illuminating the target by spectral smoothing dispersion (SSD). In this paper, based on the requirements of the double-cone ignition scheme including simultaneously realizing that the focal spot is variable at different times in size and the spatial intensity distribution is uniform, we propose a novel phase modulation technology with a rapid variable modulation index in the nanosecond scale instead of utilizing conventional constant amplitude sinusoidal curve. The relevant simulation results indicate that the proposed technology can realize the dynamic nanosecond spectral distribution and the trend correlates with the variety of modulation index. Particularly, we indirectly measure this rapid changeable spectral distribution based on the mapping relationship between frequency and time domain. We believe that the new technology is expected to meet the requirements of SSD and the dynamic focus simultaneously. Full article
(This article belongs to the Special Issue High Power Laser: Theory and Applications)
Show Figures

Figure 1

29 pages, 4117 KB  
Article
A New ϵ-Adaptive Algorithm for Improving Weighted Compact Nonlinear Scheme with Applications
by Ziquan Huang, Shichao Zheng, Dongfang Wang and Xiaogang Deng
Aerospace 2022, 9(7), 369; https://doi.org/10.3390/aerospace9070369 - 9 Jul 2022
Cited by 4 | Viewed by 2715
Abstract
To improve the resolution and accuracy of the high-order weighted compact nonlinear scheme (WCNS), a new ϵ-adaptive algorithm based on local smoothness indicators is proposed. The new algorithm introduces a high-order global smoothness indicator to adjust the value of ϵ according to [...] Read more.
To improve the resolution and accuracy of the high-order weighted compact nonlinear scheme (WCNS), a new ϵ-adaptive algorithm based on local smoothness indicators is proposed. The new algorithm introduces a high-order global smoothness indicator to adjust the value of ϵ according to the local flow characteristics. Specifically, the algorithm increases ϵ in smooth regions, which can help cover up the disparity in smoothness indicators of sub-stencils and make the nonlinear scheme approach the background linear scheme. As a result, optimal order accuracy can be achieved in smooth regions, including critical points. While near discontinuities, the algorithm decreases ϵ, thereby strengthening the stencil selection mechanism and further attenuating spurious oscillations. Meanwhile, the new algorithm makes nonlinear schemes scale-invariant of flow variables. The results of approximate dispersion relation (ADR) show that the new algorithm can greatly reduce spectral errors of nonlinear schemes in the medium and low wavenumber range without inducing instability. Numerical results indicate that the new algorithm can significantly improve resolution of small-scale structures and suppress numerical oscillations near discontinuities with only a minor increment in computational cost. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

12 pages, 10921 KB  
Article
Beam Smoothing Based on Prism Pair for Multistep Pulse Compressor in PW Lasers
by Shuman Du, Xiong Shen, Wenhai Liang, Peng Wang and Jun Liu
Photonics 2022, 9(7), 445; https://doi.org/10.3390/photonics9070445 - 23 Jun 2022
Cited by 5 | Viewed by 3933
Abstract
Ultra-short, ultra-intense lasers provide unprecedented experimental tools and extreme physical conditions, enabling the exploration of the frontiers of basic physics. Recently, a multistep pulse compressor (MPC) method was proposed to overcome the limitations of the size and the damage threshold of gratings in [...] Read more.
Ultra-short, ultra-intense lasers provide unprecedented experimental tools and extreme physical conditions, enabling the exploration of the frontiers of basic physics. Recently, a multistep pulse compressor (MPC) method was proposed to overcome the limitations of the size and the damage threshold of gratings in the compressor for the realization of a higher-peak-power laser. In the MPC method, beam smoothing is an important process in the pre-compressor. In this study, beam smoothing based on prism pairs is investigated, and the spatial profiles, as well as spectral dispersion properties, are analyzed. The simulation results demonstrate that the prism pair can effectively smooth the laser beam. Furthermore, beam smoothing is found to be more efficient with a shorter separation distance if two prism pairs are arranged to induce spatial dispersion in one or two directions. The beam smoothing results obtained in this study will help optimize optical designs in petawatt (PW) laser systems, thereby improving their output and operational safety. Full article
Show Figures

Figure 1

21 pages, 3550 KB  
Article
Intensity Measure Based on a Smooth Inelastic Peak Period for a More Effective Incremental Dynamic Analysis
by Juan Carlos Vielma, Maria Cristina Porcu and Nelson López
Appl. Sci. 2020, 10(23), 8632; https://doi.org/10.3390/app10238632 - 2 Dec 2020
Cited by 13 | Viewed by 3170
Abstract
The Incremental Dynamic Analysis (IDA) assesses the global collapse capacity of a structure by plotting its maximum inelastic response, obtained through a non-linear time-history analysis, versus the scaled intensity of different input earthquakes. The seismic intensity is often measured through the spectral acceleration [...] Read more.
The Incremental Dynamic Analysis (IDA) assesses the global collapse capacity of a structure by plotting its maximum inelastic response, obtained through a non-linear time-history analysis, versus the scaled intensity of different input earthquakes. The seismic intensity is often measured through the spectral acceleration at the fundamental elastic period. However, this can produce highly variable results. An alternative method is presented in this paper that relies on the elongated period, calculated either from the Fourier spectrum of the acceleration at a target building point (inelastic peak period) or from a smooth Fourier spectrum (inelastic smooth peak period). By referring to a reference reinforced concrete building and to a set of 10 spectrum-consistent earthquakes, the paper presents the results of a wide investigation. First, the variation in the elongated period as a function of the seismic intensity is discussed. Then, the effectiveness of the proposed method is assessed by comparing the IDA curves to those obtained through the elastic period or through approximate values of the elongated period given in the literature. The results show that the alternative IDA procedure generates curves with less-dispersed collapse thresholds. A statistical analysis shows significant improvements in the results when the inelastic smooth peak period is adopted. Full article
Show Figures

Figure 1

30 pages, 7812 KB  
Article
Analytical Solutions for the Propagation of UltraShort and UltraSharp Pulses in Dispersive Media
by Er’el Granot
Appl. Sci. 2019, 9(3), 527; https://doi.org/10.3390/app9030527 - 4 Feb 2019
Cited by 6 | Viewed by 3821
Abstract
Ultrashort pulses are severely distorted even by low dispersive media. While the mathematical analysis of dispersion is well known, the technical literature focuses on pulses, Gaussian and Airy pulses, which keep their shape. However, the cases where the shape of the pulse is [...] Read more.
Ultrashort pulses are severely distorted even by low dispersive media. While the mathematical analysis of dispersion is well known, the technical literature focuses on pulses, Gaussian and Airy pulses, which keep their shape. However, the cases where the shape of the pulse is unaffected by dispersion is the exception rather than the norm. It is the objective of this paper to present a variety of pulse profiles, which have analytical expressions but can simulate real-physical pulses with great accuracy. In particular, the dynamics of smooth rectangular pulses, physical Nyquist-Sinc pulses, and slowly rising but sharply decaying ones (and vice versa) are presented. Besides the usage of this paper as a handbook of analytical expressions for pulse propagations in a dispersive medium, there are several new findings. The main findings are the analytical expressions for the propagation of chirped rectangular pulses, which converge to extremely short pulses; an analytical approximation for the propagation of super-Gaussian pulses; the propagation of the Nyquist-Sinc Pulse with smooth spectral boundaries; and an analytical expression for a physical realization of an attenuation compensating Airy pulse. Full article
(This article belongs to the Special Issue Ultrafast Laser Pulses)
Show Figures

Figure 1

32 pages, 18696 KB  
Article
Bar-Wave Calibration of Acoustic Emission Sensors
by Kanji Ono, Takahiro Hayashi and Hideo Cho
Appl. Sci. 2017, 7(10), 964; https://doi.org/10.3390/app7100964 - 21 Sep 2017
Cited by 11 | Viewed by 5244
Abstract
This study extended a bar-wave calibration method for acoustic emission (AE) sensors. It combined laser interferometer displacement measurements and the wave propagation medium of a long bar, excited at its end with an ultrasonic transducer driven by a pulser. Receiving bar-wave sensitivities of [...] Read more.
This study extended a bar-wave calibration method for acoustic emission (AE) sensors. It combined laser interferometer displacement measurements and the wave propagation medium of a long bar, excited at its end with an ultrasonic transducer driven by a pulser. Receiving bar-wave sensitivities of 16 types of AE sensors were measured and compared to their receiving sensitivities to normally incident waves. The two types of the receiving sensitivity always differed for a given AE sensor. The bar-wave sensitivities of R6a sensors resembled their surface-wave sensitivities, indicating that the bar-wave sensitivities can represent the surface-wave sensitivities in typical AE applications. Some bar-wave modes were identified by comparing peaks found on observed Choi-Williams transform spectrograms with the positions on the dispersion curves for bar waves, calculated with the SAFE procedure. However, numerous bar-wave modes prevented exact identification, especially above 500 kHz. Aperture effects contributed to the sensitivity reduction at higher frequencies and to more fluctuating bar-wave receiving sensitivities even for sensors with smooth or flat receiving sensitivities to normally incident waves. Spectral dips observed in bar-wave results can be accounted for by aperture effect predictions reasonably well. For the selection of AE sensors, one needs to use the appropriate type of sensitivities considering waves to be detected. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

Back to TopTop