Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = smart acoustic absorbers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5354 KiB  
Article
Study on a Hexagonal Acoustic Metamaterial Cell of Multiple Parallel-Connection Resonators with Tunable Perforating Rate
by Hongxiang Cheng, Fei Yang, Xinmin Shen, Xiaocui Yang, Xiaonan Zhang and Shaohua Bi
Materials 2023, 16(15), 5378; https://doi.org/10.3390/ma16155378 - 31 Jul 2023
Cited by 7 | Viewed by 1805
Abstract
The limited occupied space and various noise spectrum requires an adjustable sound absorber with a smart structure and tunable sound absorption performance. The hexagonal acoustic metamaterial cell of the multiple parallel-connection resonators with tunable perforating rate was proposed in this research, which consisted [...] Read more.
The limited occupied space and various noise spectrum requires an adjustable sound absorber with a smart structure and tunable sound absorption performance. The hexagonal acoustic metamaterial cell of the multiple parallel-connection resonators with tunable perforating rate was proposed in this research, which consisted of six triangular cavities and six trapezium cavities, and the perforation rate of each cavity was adjustable by moving the sliding block along the slideway. The optimal geometric parameters were obtained by the joint optimization of the acoustic finite element simulation and cuckoo search algorithm, and the average sound absorption coefficients in the target frequency ranges of 650–1150 Hz, 700–1200 Hz and 700–1000 Hz were up to 0.8565, 0.8615 and 0.8807, respectively. The experimental sample was fabricated by the fused filament fabrication method, and its sound absorption coefficients were further detected by impedance tube detector. The consistency between simulation data and experimental data proved the accuracy of the acoustic finite element simulation model and the effectiveness of the joint optimization method. The tunable sound absorption performance, outstanding low-frequency noise reduction property, extensible outline structure and efficient space utilization were favorable to promote its practical applications in noise reduction. Full article
Show Figures

Graphical abstract

42 pages, 26314 KiB  
Review
Metamaterials for Acoustic Noise Filtering and Energy Harvesting
by Fariha Mir, Debdyuti Mandal and Sourav Banerjee
Sensors 2023, 23(9), 4227; https://doi.org/10.3390/s23094227 - 23 Apr 2023
Cited by 12 | Viewed by 9800
Abstract
Artificial methods for noise filtering are required for the twenty-first century’s Factory vision 4.0. From various perspectives of physics, noise filtering capabilities could be addressed in multiple ways. In this article, the physics of noise control is first dissected into active and passive [...] Read more.
Artificial methods for noise filtering are required for the twenty-first century’s Factory vision 4.0. From various perspectives of physics, noise filtering capabilities could be addressed in multiple ways. In this article, the physics of noise control is first dissected into active and passive control mechanisms and then further different physics are categorized to visualize their respective physics, mechanism, and target of their respective applications. Beyond traditional passive approaches, the comparatively modern concept for sound isolation and acoustic noise filtering is based on artificial metamaterials. These new materials demonstrate unique interaction with acoustic wave propagation exploiting different physics, which is emphasized in this article. A few multi-functional metamaterials were reported to harvest energy while filtering the ambient noise simultaneously. It was found to be extremely useful for next-generation noise applications where simultaneously, green energy could be generated from the energy which is otherwise lost. In this article, both these concepts are brought under one umbrella to evaluate the applicability of the respective methods. An attempt has been made to create groundbreaking transformative and collaborative possibilities. Controlling of acoustic sources and active damping mechanisms are reported under an active mechanism. Whereas Helmholtz resonator, sound absorbing, spring-mass damping, and vibration absorbing approaches together with metamaterial approaches are reported under a passive mechanism. The possible application of metamaterials with ventilation while performing noise filtering is reported to be implemented for future Smart Cities. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Figure 1

13 pages, 3955 KiB  
Article
Numerical and Experimental Validation of Active Vibration Control Logic Performance of a Hybrid Noise Control-Based Brick
by Ilaria Ronconi, Roberta Salierno, Ling Liu, Andrea Giglio, Francesco Ripamonti and Ingrid Paoletti
Acoustics 2022, 4(3), 720-732; https://doi.org/10.3390/acoustics4030043 - 28 Aug 2022
Cited by 2 | Viewed by 3123
Abstract
The limitations of active noise control (ANC) in coping with low frequencies and of passive noise control (PNC) in coping with middle-high frequencies are objects of research that present the potentialities of hybrid noise control (HBC). It aims at combining both of the [...] Read more.
The limitations of active noise control (ANC) in coping with low frequencies and of passive noise control (PNC) in coping with middle-high frequencies are objects of research that present the potentialities of hybrid noise control (HBC). It aims at combining both of the behaviours by broadening the range of absorbed frequencies. Among the several application fields, the AEC (architecture, engineering, and construction) market can take advantage for those applications in which the noise conditions are caused by sound sources that tune in a broad frequencies range. In this frame, the paper describes the numerical and experimental validation of the active behaviour of an under-development project of a hybrid noise control-based acoustic bricks. The latter intends to embed the potentialities of active vibrational noise control (AVC) and passive destructive interference (PDI) in a unique design of an easy-to-mount, 3D-printed, customisable smart acoustic blocks. Active vibration control, the object of this paper, is provided by a 5-mm thick aluminium circular plate with an attached piezoelectric patch. The vibration of the latter, depending on a specific control law, defines the vibration of the plate itself achieving an abatement of the reflection coefficient. Through mathematical modelling and tests in an impedance tube, the results show that the control logic can reach an average abatement of the reflection coefficient of 82% in the frequency range 144–1007 Hz. Full article
Show Figures

Figure 1

10 pages, 2313 KiB  
Communication
Reflected Wave Reduction Based on Time-Delay Separation for the Plane Array of Multilayer Acoustic Absorbers
by Hwijin Park, Yeong Bae Won, Sehyeong Jeong, Joo Young Pyun, Kwan Kyu Park, Jeong-Min Lee, Hee-Seon Seo and Hak Yi
Sensors 2021, 21(24), 8432; https://doi.org/10.3390/s21248432 - 17 Dec 2021
Viewed by 2428
Abstract
This paper presents a control technique for reducing the reflection of acoustic signals for the plane array of multilayer acoustic absorbers underwater. In order to achieve this, a plane array of multilayer acoustic absorbers is proposed to attenuate low-frequency noise, with each unit [...] Read more.
This paper presents a control technique for reducing the reflection of acoustic signals for the plane array of multilayer acoustic absorbers underwater. In order to achieve this, a plane array of multilayer acoustic absorbers is proposed to attenuate low-frequency noise, with each unit consisting of a piezoelectric transducer, two layers of polyvinylidene fluorides and three layers of the acoustic window. Time-delay separation is used to find the incident and reflected acoustic signals to achieve reflected sound reduction. Experimental comparison of the attenuation rate of the reflected acoustic signal when performing passive and active controls is considered to verify the effectiveness of the time-delay separation technique applied plane array absorbers. Experiments on the plane array of smart skin absorbers confirmed that the reduction of reflected acoustic signals makes it suitable for a wide range of underwater applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

15 pages, 5821 KiB  
Article
Dielectric Elastomer Actuator-Based Multifunctional Smart Window for Transparency Tuning and Noise Absorption
by Milan Shrestha, Gih-Keong Lau, Anand Asundi and Zhenbo Lu
Actuators 2021, 10(1), 16; https://doi.org/10.3390/act10010016 - 15 Jan 2021
Cited by 17 | Viewed by 5209
Abstract
Soft actuators are compliant material-based devices capable of producing large deformation upon external stimuli. Dielectric elastomer actuators (DEA) are a type of soft actuator that operates on voltage stimuli. Apart from soft robotics, these actuators can serve many novel applications, for example, tunable [...] Read more.
Soft actuators are compliant material-based devices capable of producing large deformation upon external stimuli. Dielectric elastomer actuators (DEA) are a type of soft actuator that operates on voltage stimuli. Apart from soft robotics, these actuators can serve many novel applications, for example, tunable optical gratings, lenses, diffusers, smart windows and so on. This article presents our current work on tunable smart windows which can regulate the light transmittance and the sound absorption. This smart window can promote daylighting while maintaining privacy by electrically switching between transparent and opaque. As a tunable optical surface scatters, it turns transparent with smooth surfaces like a flat glass; but it turns ‘opaque’ (translucent) with the micro-rough surface. The surface roughness is varied employing surface micro-wrinkling or unfolding using dielectric elastomer actuation. Moreover, this smart window is equipped with another layer of transparent micro-perforated dielectric elastomer actuator (DEA), which acts like Helmholtz resonators serving as a tunable and broader sound absorber. It can electrically tune its absorption spectrum to match the noise frequency for maximum acoustic absorption. The membrane tension and perforation size are tuned using DEA activation to tune its acoustic resonant frequency. Such a novel smart window can be made as cheap as glass due to its simple all-solid-state construction. In future, they might be used in smart green buildings and could potentially enhance urban livability. Full article
Show Figures

Graphical abstract

10 pages, 2573 KiB  
Proceeding Paper
Multifunctional Smart Window Based on Dielectric Elastomer Actuator
by Milan Shrestha, Gih-Keong Lau, Anand Asundi and Zhenbo Lu
Proceedings 2020, 64(1), 32; https://doi.org/10.3390/IeCAT2020-08509 - 21 Nov 2020
Cited by 5 | Viewed by 1636
Abstract
Soft actuators are compliant material-based devices capable of producing large deformations upon external stimuli. Dielectric elastomer actuators (DEAs) are a type of soft actuators that operate on voltage stimuli. Apart from soft robotics, these actuators can serve many novel applications, such as tunable [...] Read more.
Soft actuators are compliant material-based devices capable of producing large deformations upon external stimuli. Dielectric elastomer actuators (DEAs) are a type of soft actuators that operate on voltage stimuli. Apart from soft robotics, these actuators can serve many novel applications, such as tunable optical gratings, lens, diffusers, smart windows and so on. This article presents our current work on tunable smart windows which can regulate light transmittance and sound absorption. This smart window can promote daylighting while maintaining privacy by electrically switching between being transparent and opaque. As a tunable optical surface scatters, it turns transparent with smooth surfaces like a flat glass; however, it turns opaque (translucent) with the micro-rough surface. The surface roughness is varied, employing surface microwrinkling or unfolding by using dielectric elastomer actuation. In addition, this smart window is equipped with another layer of transparent microperforated dielectric elastomer actuators (DEAs), which act like Helmholtz resonators, serving as a tunable and broader sound absorber. It can electrically tune its absorption spectrum to match the noise frequency for maximum acoustic absorption. The membrane tension and perforation size are tuned using DEA activation to tune its acoustic resonant frequency. Such a novel smart window can be made as cheap as glass due to its simple, all-solid-state construction. In the future, they might be used in smart green building and could potentially enhance urban livability. Full article
Show Figures

Figure 1

12 pages, 2644 KiB  
Article
Dynamic Simulation of a Metamaterial Beam Consisting of Tunable Shape Memory Material Absorbers
by Hua-Liang Hu, Ji-Wei Peng and Chun-Ying Lee
Vibration 2018, 1(1), 81-92; https://doi.org/10.3390/vibration1010007 - 18 Jul 2018
Cited by 4 | Viewed by 4537
Abstract
Metamaterials are materials with an artificially tailored internal structure and unusual physical and mechanical properties such as a negative refraction coefficient, negative mass inertia, and negative modulus of elasticity, etc. Due to their unique characteristics, metamaterials possess great potential in engineering applications. This [...] Read more.
Metamaterials are materials with an artificially tailored internal structure and unusual physical and mechanical properties such as a negative refraction coefficient, negative mass inertia, and negative modulus of elasticity, etc. Due to their unique characteristics, metamaterials possess great potential in engineering applications. This study aims to develop new acoustic metamaterials for applications in semi-active vibration isolation. For the proposed state-of-the-art structural configurations in metamaterials, the geometry and mass distribution of the crafted internal structure is employed to induce the local resonance inside the material. Therefore, a stopband in the dispersion curve can be created because of the energy gap. For conventional metamaterials, the stopband is fixed and unable to be adjusted in real-time once the design is completed. Although the metamaterial with distributed resonance characteristics has been proposed in the literature to extend its working stopband, the efficacy is usually compromised. In order to increase its adaptability to time-varying disturbance, several semi-active metamaterials have been proposed. In this study, the incorporation of a tunable shape memory alloy (SMA) into the configuration of metamaterial is proposed. The repeated resonance unit consisting of SMA beams is designed and its theoretical formulation for determining the dynamic characteristics is established. For more general application, the finite element model of this smart metamaterial is also derived and simulated. The stopband of this metamaterial beam with different configurations in the arrangement of the SMA absorbers was investigated. The result shows that the proposed model is able to predict the unique dynamic characteristics of this smart metamaterial beam. Moreover, the tunable stopband of the metamaterial beam with controlling the state of SMA absorbers was also demonstrated. Full article
Show Figures

Figure 1

Back to TopTop