Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = small-scale linear Fresnel reflectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5869 KiB  
Article
Thermal Analysis of Parabolic and Fresnel Linear Solar Collectors Using Compressed Gases as Heat Transfer Fluid in CSP Plants
by Roberto Grena, Michela Lanchi, Marco Frangella, Vittorio Ferraro, Valerio Marinelli and Marco D’Auria
Energies 2024, 17(16), 3880; https://doi.org/10.3390/en17163880 - 6 Aug 2024
Viewed by 1606
Abstract
This study introduces the use of compressed air as a heat transfer fluid in small-scale, concentrated linear solar collector technology, evaluating its possible advantages over traditional fluids. This work assumes the adoption of readily available components for both linear parabolic trough and Fresnel [...] Read more.
This study introduces the use of compressed air as a heat transfer fluid in small-scale, concentrated linear solar collector technology, evaluating its possible advantages over traditional fluids. This work assumes the adoption of readily available components for both linear parabolic trough and Fresnel collectors and the coupling of the solar field with Brayton cycles for power generation. The aim is to provide a theoretical analysis of the applicability of this novel solar plant configuration for small-scale electricity generation. Firstly, a lumped thermal model was developed in a MatLab® (v. 2023a) environment to assess the thermal performance of a PT collector with an evacuated receiver tube. This model was then modified to describe the performance of a Fresnel collector. The resulting optical–thermal model was validated through literature data and appears to provide realistic estimates of temperature distribution along the entire collector length, including both the receiver tube surface and the Fresnel collector’s secondary concentrator. The analysis shows a high thermal efficiency for both Fresnel and parabolic collectors, with average values above 0.9 (in different wind conditions). Th5s study also shows that the glass covering of the Fresnel evacuated receiver, under the conditions considered (solar field outlet temperature: 550 °C), reaches significant temperatures (above 300 °C). Furthermore, due to the presence of the secondary reflector, the temperature difference between the upper and the lower part of the glass envelope can be very high, well above 100 °C in the final part of the collector string. Differently, in the case of PTs, this temperature difference is quite limited (below 30 °C). Full article
(This article belongs to the Special Issue Advances in Solar Systems and Energy Efficiency: 2nd Edition)
Show Figures

Figure 1

14 pages, 1770 KiB  
Article
Quantifying the Shading Effects of a Small-Scale Rooftop-Installed Linear Fresnel Reflector in Cyprus
by Alaric Christian Montenon, Giorgos Papakokkinos and Kostantinos Ilia
Energies 2024, 17(13), 3269; https://doi.org/10.3390/en17133269 - 3 Jul 2024
Viewed by 1227
Abstract
Linear Fresnel reflectors are a versatile solar concentration technology, suitable for a wide range of industrial processes and thermal conditioning applications. Such collectors entail a certain footprint, generating shading on the surface where they are installed. This effect is rarely quantified but may [...] Read more.
Linear Fresnel reflectors are a versatile solar concentration technology, suitable for a wide range of industrial processes and thermal conditioning applications. Such collectors entail a certain footprint, generating shading on the surface where they are installed. This effect is rarely quantified but may play an indirect role on the surface below. When installed on a roof, the solar radiation heats the building less. In places where the annual heating demand is higher than the cooling demand, this constitutes an asset. However, this becomes a disadvantage when the cooling demand is higher annually than the heating demand. Essentially, the reduced solar radiation allows for the growth of plants that would not grow without the shade provided by the collector. The present paper is a quantitative analysis of such shading based on the linear Fresnel reflector of the Cyprus Institute. The work was conducted using the Tonatiuh++ ray-tracing software to determine the annual radiation blocking. A total of four years of actual meteorological measurements were applied directly to the ray-tracing model. Full article
(This article belongs to the Special Issue Latest Research on Solar Thermal Systems)
Show Figures

Figure 1

34 pages, 7161 KiB  
Article
Experimental Investigation of the Influence of Longitudinal Tilt Angles on the Thermal Performance of a Small-Scale Linear Fresnel Reflector
by Carmen López-Smeetz, Arsenio Barbón, Luis Bayón and Covadonga Bayón-Cueli
Appl. Sci. 2024, 14(9), 3666; https://doi.org/10.3390/app14093666 - 25 Apr 2024
Viewed by 1198
Abstract
This paper analyses the influence of the longitudinal tilt angle of the secondary system of a low-concentration photovoltaic system based on a small-scale linear Fresnel reflector. Several evaluation indicators, such as useful heat gain, thermal efficiency, incident solar irradiance gain on the photovoltaic [...] Read more.
This paper analyses the influence of the longitudinal tilt angle of the secondary system of a low-concentration photovoltaic system based on a small-scale linear Fresnel reflector. Several evaluation indicators, such as useful heat gain, thermal efficiency, incident solar irradiance gain on the photovoltaic cells, and total useful energy gain, were evaluated for five wind speed conditions and six locations in the Northern Hemisphere. The tests were performed with two small-scale linear Fresnel reflector configurations: the classical large-scale linear Fresnel reflector configuration (base configuration) and the optimal longitudinal tilt angle configuration (longitudinal tilt configuration). An experimental platform based on an open-loop wind tunnel was designed and built for this purpose. As far as useful heat production, the longitudinal tilt configuration performs worse as the longitudinal tilt angle and wind speed increase. A useful heat gain 33.91% lower than the base configuration is obtained with a wind speed of 10.03 (m/s) at the 36.86 (°) latitude location. Thermal efficiency decreases with increasing wind speed and longitudinal tilt angle. The thermal efficiency is between 0.3 and 0.2 with wind speeds of 4.99 (m/s) and 10.03 (m/s). The longitudinal tilt configuration shows the best increase in total useful energy gain in the absence of wind (up to 53% at a latitude of 36.86 (°)). This increase is 25% at this same location with a wind speed of 10.03 (m/s). It can be concluded that the effect of the longitudinal tilt of the secondary system has a positive effect. To highlight the importance of this work, the results obtained in the configuration comparison were used to compare a nonconcentrating photovoltaic system and a low-concentration photovoltaic system. The incident solar irradiance on the photovoltaic cells is much higher with nonconcentrating photovoltaic technology. This solar irradiance gain is over 60% for the base configuration and 45% for the longitudinal tilt configuration. The total useful energy gain is 70% in the absence of wind and at the 36.86 (°) latitude location in favour of the low-concentration photovoltaic system. The nonconcentrating photovoltaic system performs better with a wind speed of 10.03 (m/s). Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

30 pages, 8277 KiB  
Article
Sawtooth V-Trough Cavity for Low-Concentration Photovoltaic Systems Based on Small-Scale Linear Fresnel Reflectors: Optimal Design, Verification, and Construction
by José Ángel Fernández-Rubiera, Arsenio Barbón, Luis Bayón and Mokhtar Ghodbane
Electronics 2023, 12(13), 2770; https://doi.org/10.3390/electronics12132770 - 21 Jun 2023
Cited by 4 | Viewed by 1828
Abstract
Ensuring the uniformity of solar irradiance distribution on photovoltaic cells is a major challenge in low-concentrating photovoltaic systems based on a small-scale linear Fresnel reflector. A novel sawtooth V-cavity design method based on an optimization algorithm to achieve uniform irradiance distribution on photovoltaic [...] Read more.
Ensuring the uniformity of solar irradiance distribution on photovoltaic cells is a major challenge in low-concentrating photovoltaic systems based on a small-scale linear Fresnel reflector. A novel sawtooth V-cavity design method based on an optimization algorithm to achieve uniform irradiance distribution on photovoltaic cells is presented. The reliability of the design was verified using the Monte Carlo ray-tracing method and a laser experiment. A prototype was built using 3D printing technology with a biodegradable green polymer material known as polylactic acid. The new cavity was compared to the standard V-trough cavity, keeping the cavity aperture, reflective surface area, and photovoltaic cell width constant. In addition, the focal height, number of mirrors, mirror width, and mirror spacing were also kept constant; so, the cost of the two configurations was the same from the point of view of the primary reflector system. The new design ensured the uniform distribution of solar irradiation and significantly reduced the height of the cavity. The significant decrease in the height of the proposed cavity has the following advantages: (i) a decrease in the dimensions of the fixed structure of the small-scale linear Fresnel reflector, thus reducing its cost, (ii) a significant decrease in the surface area exposed to wind loads, thus reducing the cost of the fixed structure and secondary system structures, (iii) a reduction in the difficulty of the manufacture, maintenance, and transportation of the cavity’s reflecting walls, and (iv) an increase in the cooling surface area, which increases the electrical efficiency of the photovoltaic cells. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy Storage Systems, Volume II)
Show Figures

Figure 1

18 pages, 1483 KiB  
Article
A New Two-Foci V-Trough Concentrator for Small-Scale Linear Fresnel Reflectors
by Alberto Pardellas, Pedro Fortuny Ayuso, Luis Bayón and Arsenio Barbón
Energies 2023, 16(4), 1597; https://doi.org/10.3390/en16041597 - 5 Feb 2023
Cited by 3 | Viewed by 1656
Abstract
We present the design of an original secondary cavity for use in Small-Scale Fresnel Reflectors in photovoltaic applications. The cavity is similar to the classical V-trough, but the primary reflector system is configured so that there are two focal points on the aperture. [...] Read more.
We present the design of an original secondary cavity for use in Small-Scale Fresnel Reflectors in photovoltaic applications. The cavity is similar to the classical V-trough, but the primary reflector system is configured so that there are two focal points on the aperture. The rays coming from each side of the primary system reach the opposite side of the cavity, producing a non-symmetrical distribution of the irradiance. This modifies the acceptance half-angle and allows us to break the maximum limit for the concentration ratio of ideal symmetric concentrators. Our study is analytic, and we provide formulas for any number of reflections. Numerical simulations with a ray-tracing program based on MATLAB are included. We provide a comparison of optical concentration ratio, height and cost parameter between our system and two classical designs with a single focal point: the V-trough and the Compound Parabolic concentrators. This way, we verify that our design yields better concentration ratios while keeping the ray acceptance rate at one. Our solution proves to be better than both the classical one-focus V-trough and the Compound Parabolic concentrator. Specifically, the proposed solution is significantly better than the classical one-focus V-trough in optical concentration ratio, with an increase between 15.02 and 35.95%. As regards the compound parabolic concentrator, the optical concentration ratio is always slightly better (around 4%). The height of the cavity, however, is notably less in this design (around 54.33%). Full article
(This article belongs to the Special Issue Advances in Solar Thermal Energy Harvesting, Storage and Conversion)
Show Figures

Figure 1

15 pages, 1217 KiB  
Article
Theoretical Deduction of the Optimum Tilt Angles for Small-Scale Linear Fresnel Reflectors
by Arsenio Barbón, Covadonga Bayón-Cueli, José A. Fernández Rubiera and Luis Bayón
Energies 2021, 14(10), 2883; https://doi.org/10.3390/en14102883 - 17 May 2021
Cited by 1 | Viewed by 2113
Abstract
A theoretical justification and computation of the optimum values of the two longitudinal tilt angles of a small-scale linear Fresnel reflector is provided. The optimum angle of the mobile structure is proved to be half the latitude of the geographic location, while the [...] Read more.
A theoretical justification and computation of the optimum values of the two longitudinal tilt angles of a small-scale linear Fresnel reflector is provided. The optimum angle of the mobile structure is proved to be half the latitude of the geographic location, while the optimum angle of the secondary reflector system is proved to be equal to that latitude. Brute-force verification is carried out for five EU cities, each in one of the five European climate zones. Full article
(This article belongs to the Special Issue Research and Business in Renewable Energy Sources 2020)
Show Figures

Figure 1

6 pages, 975 KiB  
Proceeding Paper
Analysis and Design of IoT-Enabled, Low-Cost Distributed Angle Measurement System
by Rowida Meligy, Imanol Picallo, Hicham Klaina, Peio Lopez-Iturri, José Javier Astrain, Mohamed Rady, Jesús Villadangos, Ana Alejos and Francisco Falcone
Proceedings 2020, 42(1), 58; https://doi.org/10.3390/ecsa-6-06534 - 14 Nov 2019
Cited by 1 | Viewed by 1295
Abstract
A Linear Fresnel Reflector (LFR) is a recent technology with good potential in small-scale solar power applications. It is composed of many long rows of mirrors that focus the sunlight onto a fixed elevated tubular receiver. Mirror segments are aligned horizontally and track [...] Read more.
A Linear Fresnel Reflector (LFR) is a recent technology with good potential in small-scale solar power applications. It is composed of many long rows of mirrors that focus the sunlight onto a fixed elevated tubular receiver. Mirror segments are aligned horizontally and track the sun such that the receiver does not need to be moved. The efficiency with which the LFR can convert solar to thermal energy depends on the accuracy of the sun tracking system. To maximize the degree of sunlight capture, precise solar tracking is needed so that incident solar rays can be adequately focused to the focal point given by the location of the tubular receiver. The tilt angles of each row are relevant for the tracking controller to achieve correct positioning. Encoders are generally employed in closed-loop tracking systems as feedback signals used to inform the controller with the actual position of collector mirrors. Recently, inclinometers have begun to replace encoders as the most viable and cost-effective sensor technology solution; they offer simpler and more precise feedback, as they measure the angle of tilt with respect to gravity and provide the ability to adjust the system to the optimal angle for maximum output. This paper presents the research results on the development of remote measurements for the precise control of an LFR tracking system, by using distributed angle measurements. The applied methodology enables precision measurement LFR inclination angles through the fusion of data from multiple accelerometers, supported by low-cost wireless transceivers in a wireless sensor network, capable of exchanging information in a cloud infrastructure. Full article
Show Figures

Figure 1

Back to TopTop