Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = slide valve flow force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 17382 KiB  
Article
Speed–Pressure Compound Control of Thrust System Based on the Adaptive Sliding Mode Control Strategy
by Tong Xing, Hong Liu, Zhe Zheng, Lianhui Jia, Lijie Jiang, Guofang Gong, Huayong Yang and Dong Han
Machines 2025, 13(3), 213; https://doi.org/10.3390/machines13030213 - 6 Mar 2025
Viewed by 537
Abstract
The thrust system, an important subsystem of a tunnel boring machine (TBM), primarily provides thrust force and adjusts TBM’s attitude in real time. In the tunneling process, only controlling the thrust speed causes pressure oscillations, increases soil deformation, and leads to surface subsidence [...] Read more.
The thrust system, an important subsystem of a tunnel boring machine (TBM), primarily provides thrust force and adjusts TBM’s attitude in real time. In the tunneling process, only controlling the thrust speed causes pressure oscillations, increases soil deformation, and leads to surface subsidence or upheaval. Conversely, solely relying on pressure control causes fluctuations in speed, making it difficult to ensure that the deviation between the designed tunneling axis (DTA) and the actual tunneling axis (ATA) remains within the permissible range. Due to the increase in geological complexity and higher construction quality standards, primarily relying on single-mode speed or pressure control has become inadequate to meet operational demands. Therefore, to realize higher safety and precise trajectory tracking, it is necessary to ensure speed and pressure compound control for thrust systems. This paper proposes a novel adaptive sliding mode control (ASMC) strategy for thrust systems, which is composed of a proportional pressure relief valve (PPRV) and a proportional flow control valve (PFCV). Firstly, PPRV and PFCV are modeled as a second-order system and an ASMC is employed to control the pressure and speed. Next, to assess the performance of the ASMC controller, simulation experiments were conducted under various conditions, including speed regulation, sudden changed load, and disturbed load. The simulation results indicate that compared to the Proportion–Integral–Differential (PID) controller, the ASMC controller shows almost no overshoot in speed and pressure control during the initial stages, with the response time reduced by approximately 70%. During speed regulation process and sudden changed load process, the response time for both speed and pressure control is shortened by about 80%. In the disturbed load process, the ASMC controller maintains pressure stability. In conclusion, the ASMC controller significantly improves the response speed and stability of the thrust system, exhibiting better control performance under various operating conditions. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

20 pages, 17040 KiB  
Article
Study on Steady Flow Force of a Bidirectional Throttling Slide Valve and Its Compensation Optimization
by Qi Mao, Xinying Jia, Zhe Liu, Guang Li, Yichi Cao and Qingjun Yang
Appl. Sci. 2024, 14(23), 11037; https://doi.org/10.3390/app142311037 - 27 Nov 2024
Viewed by 791
Abstract
This paper focuses on a typical pressure-controlled slide valve, utilizing momentum analysis and computational fluid dynamics to simulate and analyze the asymmetry of steady flow force curves under bidirectional throttling patterns. The entropy production theory is employed to reveal the causes of nonlinearity [...] Read more.
This paper focuses on a typical pressure-controlled slide valve, utilizing momentum analysis and computational fluid dynamics to simulate and analyze the asymmetry of steady flow force curves under bidirectional throttling patterns. The entropy production theory is employed to reveal the causes of nonlinearity in the steady flow force of an inlet throttling slide valve. Based on flow field analysis, a flow force compensation scheme is proposed by adding a guiding shoulder and matching it with a suitably sized inner annular cavity. The study reveals that fluid momentum at the non-throttling valve port is the primary cause of the bidirectional throttling flow force difference, and under large-opening inlet throttling conditions, it may reverse the direction of the flow force. Vortex separation caused by turbulent pulsations is one of the intrinsic reasons for the nonlinearity of steady flow force. Full article
Show Figures

Figure 1

21 pages, 4949 KiB  
Review
Review of the Research on and Optimization of the Flow Force of Hydraulic Spool Valves
by Ruichuan Li, Yuhang Sun, Xiaowei Wu, Peng Zhang, Defang Li, Jianghai Lin, Yuhai Xia and Qiyou Sun
Processes 2023, 11(7), 2183; https://doi.org/10.3390/pr11072183 - 21 Jul 2023
Cited by 8 | Viewed by 3698
Abstract
As one of the important factors affecting the stability of slide valves, the analysis and research of flow force are of great significance. In recent years, more and more experts and scholars have conducted research in this field, attempting to find methods to [...] Read more.
As one of the important factors affecting the stability of slide valves, the analysis and research of flow force are of great significance. In recent years, more and more experts and scholars have conducted research in this field, attempting to find methods to reduce or utilize the flow force of hydraulic spool valves. Flow force includes steady-state flow force and transient flow force, with steady-state flow force having the most significant impact on spool valves. The influencing factors of flow force are complex and diverse, including the cavitation phenomenon, shape of the throttling groove, and jet angle. At present, the main ways to reduce flow force are to design the structure of the spool valve, the structure of the valve sleeve, and the flow channel of the valve body. This article mainly reviews the definition, calculation methods, influencing factors, and methods for reducing the flow force of slide valves. This provides a new approach to reducing the flow force in hydraulic spool valves. Full article
Show Figures

Figure 1

17 pages, 4337 KiB  
Article
Development and Control of an Electro-Hydraulic Actuator System for an Exoskeleton Robot
by Dongyoung Lee, Buchun Song, Sang Yong Park and Yoon Su Baek
Appl. Sci. 2019, 9(20), 4295; https://doi.org/10.3390/app9204295 - 12 Oct 2019
Cited by 26 | Viewed by 7477
Abstract
Exoskeleton robots have been developed in various fields and are divided into electric and hydraulic exoskeletons according to the actuator type. In the case of hydraulic robots, because a unidirectional pump is applied, there are limitations to the wearer’s walking. In addition, robot [...] Read more.
Exoskeleton robots have been developed in various fields and are divided into electric and hydraulic exoskeletons according to the actuator type. In the case of hydraulic robots, because a unidirectional pump is applied, there are limitations to the wearer’s walking. In addition, robot systems are complicated, because a directional control valve is required to change the direction of the actuator. To solve these problems, we designed the electro-hydraulic actuator (EHA) system which has both the hydraulic and electric advantages. The EHA system consists of a hydraulic bidirectional pump, a motor, a hydraulic cylinder, and various valves. For the development of the piston pump, we analyzed the gait cycle and considered the flow rate and pulsation rate. In order to reduce the size and weight of the EHA system, the valves were made from one manifold, and the hydraulic circuit was simplified. We verified that the developed EHA system is applicable to robots through position and force control experiments. Because the hydraulic system is nonlinear, we designed a sliding mode control (SMC) and compared it with the proportional integral derivative (PID) controller. Full article
Show Figures

Figure 1

Back to TopTop