Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,548)

Search Parameters:
Keywords = six phase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 16646 KiB  
Article
Behavior of Osteoblastic Lineage Cells When in the Presence of Tamoxifen: In Vitro and In Vivo Studies on Osseointegration
by Luiz Guilherme Fiorin, Emanuela Galliera, Henrique R. Matheus, Dolaji Henin, Edilson Ervolino, Gabriela Carrara Simionato, Juliano Milanezi de Almeida and Claudia Dellavia
Dent. J. 2025, 13(8), 351; https://doi.org/10.3390/dj13080351 (registering DOI) - 1 Aug 2025
Viewed by 37
Abstract
Background/Objectives: Tamoxifen, a selective estrogen receptor modulator widely used as an adjunct in the treatment of breast cancer, has known effects on bone metabolism, although its impact on osseointegration and cellular responses during early bone healing remains unclear. Understanding these effects is essential [...] Read more.
Background/Objectives: Tamoxifen, a selective estrogen receptor modulator widely used as an adjunct in the treatment of breast cancer, has known effects on bone metabolism, although its impact on osseointegration and cellular responses during early bone healing remains unclear. Understanding these effects is essential given the increasing use of dental implants in cancer survivors. The study aimed to observe the influence of tamoxifen on human osteosarcoma (SAOS-2) cells lines, as well on the osseointegration of titanium implants in ovariectomized female rats. Methods: SAOS-2 cells were incubated with Dulbecco’s modified growth medium. Six titanium (Ti) disks were used at each time point. The samples were divided into groups with the presence (TAM, n = 36) or not (CTR, n = 36) of tamoxifen in a concentration of 2 μM. In vivo, 72 animals were divided in groups with bilateral ovariectomy or SHAM and tamoxifen administration or not (15 mg/kg). Cell viability, mineralization rate, and collagen synthesis were assessed, as well as bone/implant contact (BIC) and bone ingrowth (BIN). Results: Tamoxifen caused a decrease in SAOS-2 viability, although an increase in the mineralization rate was observed. In vivo, the TAM groups presented higher BIC and BIN when compared to their control, but a lower percentage of mature collagen cells. Conclusions: Based on our findings, in vitro, the therapy with TAM slightly reduced the viability of SAOS-2 cells while significantly increasing the mineralization rate. In vivo, the therapy positively influenced BIC and BIN during the osseointegration phase. Full article
26 pages, 7374 KiB  
Article
Copper-Enhanced NiMo/TiO2 Catalysts for Bifunctional Green Hydrogen Production and Pharmaceutical Pollutant Removal
by Nicolás Alejandro Sacco, Fernanda Albana Marchesini, Ilaria Gamba and Gonzalo García
Catalysts 2025, 15(8), 737; https://doi.org/10.3390/catal15080737 (registering DOI) - 1 Aug 2025
Viewed by 48
Abstract
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at [...] Read more.
This study presents the development of Cu-doped NiMo/TiO2 photoelectrocatalysts for simultaneous green hydrogen production and pharmaceutical pollutant removal under simulated solar irradiation. The catalysts were synthesized via wet impregnation (15 wt.% total metal loading with 0.6 wt.% Cu) and thermally treated at 400 °C and 900 °C to investigate structural transformations and catalytic performance. Comprehensive characterization (XRD, BET, SEM, XPS) revealed phase transitions, enhanced crystallinity, and redistribution of redox states upon Cu incorporation, particularly the formation of NiTiO3 and an increase in oxygen vacancies. Crystallite sizes for anatase, rutile, and brookite ranged from 21 to 47 nm at NiMoCu400, while NiMoCu900 exhibited only the rutile phase with 55 nm crystallites. BET analysis showed a surface area of 44.4 m2·g−1 for NiMoCu400, and electrochemical measurements confirmed its higher electrochemically active surface area (ECSA, 2.4 cm2), indicating enhanced surface accessibility. In contrast, NiMoCu900 exhibited a much lower BET surface area (1.4 m2·g−1) and ECSA (1.4 cm2), consistent with its inferior photoelectrocatalytic performance. Compared to previously reported binary NiMo/TiO2 systems, the ternary NiMoCu/TiO2 catalysts demonstrated significantly improved hydrogen production activity and more efficient photoelectrochemical degradation of paracetamol. Specifically, NiMoCu400 showed an anodic peak current of 0.24 mA·cm−2 for paracetamol oxidation, representing a 60% increase over NiMo400 and a cathodic current of –0.46 mA·cm−2 at –0.1 V vs. RHE under illumination, nearly six times higher than the undoped counterpart (–0.08 mA·cm−2). Mott–Schottky analysis further revealed that NiMoCu400 retained n-type behavior, while NiMoCu900 exhibited an unusual inversion to p-type, likely due to Cu migration and rutile-phase-induced realignment of donor states. Despite its higher photosensitivity, NiMoCu900 showed negligible photocurrent, confirming that structural preservation and surface redox activity are critical for photoelectrochemical performance. This work provides mechanistic insight into Cu-mediated photoelectrocatalysis and identifies NiMoCu/TiO2 as a promising bifunctional platform for integrated solar-driven water treatment and sustainable hydrogen production. Full article
(This article belongs to the Section Electrocatalysis)
25 pages, 4273 KiB  
Review
How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?
by Emmanuel Anu Thompson, Jeremy Mattson, Pan Lu, Evans Tetteh Akoto, Solomon Boadu, Herman Benjamin Atuobi, Kwabena Dadson and Denver Tolliver
Future Transp. 2025, 5(3), 100; https://doi.org/10.3390/futuretransp5030100 (registering DOI) - 1 Aug 2025
Viewed by 50
Abstract
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop [...] Read more.
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop comprehensive technology readiness frameworks and strategic deployment approaches. The review integrates systematic literature review and event history analysis of 52 studies, categorized using Social–Ecological–Technological Systems framework across six dimensions: technological, economic, social change, legal, environmental, and implementation challenges. The Technology Readiness Level (TRL) analysis reveals 39.5% of technologies achieving commercial readiness (TRL 8–9), including GPS/RTK positioning and V2V communication demonstrated through Minn-Dak Farmers Cooperative deployments, while gaps exist in TRL 4–6 technologies, particularly cold-weather operations. Nonetheless, challenges remain, including legislative fragmentation, inadequate rural infrastructure, and barriers to public acceptance. The study provides evidence-based recommendations that support a strategic three-phase deployment approach for the adoption of autonomous trucks in agriculture. Full article
Show Figures

Figure 1

21 pages, 5468 KiB  
Article
Simulation Study of Cylinder-to-Cylinder Variation Phenomena and Key Influencing Factors in a Six-Cylinder Natural Gas Engine
by Demin Jia, Qi Cao, Xiaoying Xu, Zhenlin Wang, Dan Wang and Hongqing Wang
Energies 2025, 18(15), 4078; https://doi.org/10.3390/en18154078 (registering DOI) - 1 Aug 2025
Viewed by 121
Abstract
Cylinder-to-cylinder variation (CTCV) is a prevalent issue for natural gas (NG) premixed engines with port fuel injection (PFI), which significantly impacts the engine’s power performance, fuel economy, and reliability. Focusing on this issue, this study established a three-dimensional simulation platform based on a [...] Read more.
Cylinder-to-cylinder variation (CTCV) is a prevalent issue for natural gas (NG) premixed engines with port fuel injection (PFI), which significantly impacts the engine’s power performance, fuel economy, and reliability. Focusing on this issue, this study established a three-dimensional simulation platform based on a six-cylinder natural gas premixed engine. Quantitative analysis was conducted to discuss the differences in the main boundaries, combustion process, and engine power between cylinders. Additionally, influencing factors of CTCV were explored in terms of mixture uniformity and distribution uniformity. The results indicate that, for the NG premixed engine, many parameters vary significantly between cylinders even under the economical operating condition of 1200 rpm. For example, the difference rate in the peak cylinder pressure and peak phase between cylinder 3 and cylinder 2 can reach 23.5% and 24.3%, respectively. Through the design of simulation cases, it was found that improving the mixture uniformity had a more significant impact on CTCV than improving the distribution uniformity. For example, the relative standard deviation (RSD) of peak pressure decreased by 2.15% through mixture uniformity improvement, while it only decreased by 0.39% through distribution uniformity improvement. At a high speed of 1800 rpm, the influence of distribution uniformity on CTCV increased notably, but the influence of mixture uniformity still remained greater than that of distribution uniformity. Full article
Show Figures

Figure 1

15 pages, 490 KiB  
Article
The Labour Conditions and Health of Migrant Agricultural Workers in Spain: A Qualitative Study
by Vanesa Villa-Cordero, Amalia Sillero Sillero, María del Mar Pastor-Bravo, Iratxe Pérez-Urdiales, María del Mar Jiménez-Lasserrotte and Erica Briones-Vozmediano
Healthcare 2025, 13(15), 1877; https://doi.org/10.3390/healthcare13151877 - 31 Jul 2025
Viewed by 115
Abstract
Background/Objectives: Agricultural workers in Spain with a migratory background face challenging working and living conditions that significantly affect their health. This study aimed to explore how professionals in healthcare, social services, civil society organisations, and labour institutions perceive that the working conditions [...] Read more.
Background/Objectives: Agricultural workers in Spain with a migratory background face challenging working and living conditions that significantly affect their health. This study aimed to explore how professionals in healthcare, social services, civil society organisations, and labour institutions perceive that the working conditions affect the physical health of this population. Methods: A qualitative descriptive study was conducted through 92 semi-structured interviews with professionals from six provinces in Spain. Data were analysed using thematic analysis following Braun and Clarke’s six-phase framework. Rigour was ensured through triangulation, independent coding, and interdisciplinary consensus. Results: Two overarching themes were identified: (1) the health consequences of workplace demands and environmental hazards, and (2) navigating health services such as sick leave and disability permits. These findings highlight how the impact of precarious working conditions and limited access to healthcare affect the physical health of migrant agricultural workers. Conclusions: The professionals interviewed described and relate precarious working conditions with adverse health outcomes among migrant agricultural workers. Their insights reveal the need for systemic reforms to enforce labour rights, ensure access to health services, and address the structural factors that contribute to exclusion and vulnerability. Full article
Show Figures

Figure 1

16 pages, 628 KiB  
Article
Beyond the Bot: A Dual-Phase Framework for Evaluating AI Chatbot Simulations in Nursing Education
by Phillip Olla, Nadine Wodwaski and Taylor Long
Nurs. Rep. 2025, 15(8), 280; https://doi.org/10.3390/nursrep15080280 (registering DOI) - 31 Jul 2025
Viewed by 152
Abstract
Background/Objectives: The integration of AI chatbots in nursing education, particularly in simulation-based learning, is advancing rapidly. However, there is a lack of structured evaluation models, especially to assess AI-generated simulations. This article introduces the AI-Integrated Method for Simulation (AIMS) evaluation framework, a dual-phase [...] Read more.
Background/Objectives: The integration of AI chatbots in nursing education, particularly in simulation-based learning, is advancing rapidly. However, there is a lack of structured evaluation models, especially to assess AI-generated simulations. This article introduces the AI-Integrated Method for Simulation (AIMS) evaluation framework, a dual-phase evaluation framework adapted from the FAITA model, designed to evaluate both prompt design and chatbot performance in the context of nursing education. Methods: This simulation-based study explored the application of an AI chatbot in an emergency planning course. The AIMS framework was developed and applied, consisting of six prompt-level domains (Phase 1) and eight performance criteria (Phase 2). These domains were selected based on current best practices in instructional design, simulation fidelity, and emerging AI evaluation literature. To assess the chatbots educational utility, the study employed a scoring rubric for each phase and incorporated a structured feedback loop to refine both prompt design and chatbox interaction. To demonstrate the framework’s practical application, the researchers configured an AI tool referred to in this study as “Eval-Bot v1”, built using OpenAI’s GPT-4.0, to apply Phase 1 scoring criteria to a real simulation prompt. Insights from this analysis were then used to anticipate Phase 2 performance and identify areas for improvement. Participants (three individuals)—all experienced healthcare educators and advanced practice nurses with expertise in clinical decision-making and simulation-based teaching—reviewed the prompt and Eval-Bot’s score to triangulate findings. Results: Simulated evaluations revealed clear strengths in the prompt alignment with course objectives and its capacity to foster interactive learning. Participants noted that the AI chatbot supported engagement and maintained appropriate pacing, particularly in scenarios involving emergency planning decision-making. However, challenges emerged in areas related to personalization and inclusivity. While the chatbot responded consistently to general queries, it struggled to adapt tone, complexity and content to reflect diverse learner needs or cultural nuances. To support replication and refinement, a sample scoring rubric and simulation prompt template are provided. When evaluated using the Eval-Bot tool, moderate concerns were flagged regarding safety prompts and inclusive language, particularly in how the chatbot navigated sensitive decision points. These gaps were linked to predicted performance issues in Phase 2 domains such as dialog control, equity, and user reassurance. Based on these findings, revised prompt strategies were developed to improve contextual sensitivity, promote inclusivity, and strengthen ethical guidance within chatbot-led simulations. Conclusions: The AIMS evaluation framework provides a practical and replicable approach for evaluating the use of AI chatbots in simulation-based education. By offering structured criteria for both prompt design and chatbot performance, the model supports instructional designers, simulation specialists, and developers in identifying areas of strength and improvement. The findings underscore the importance of intentional design, safety monitoring, and inclusive language when integrating AI into nursing and health education. As AI tools become more embedded in learning environments, this framework offers a thoughtful starting point for ensuring they are applied ethically, effectively, and with learner diversity in mind. Full article
Show Figures

Figure 1

23 pages, 6014 KiB  
Article
Modeling Water Table Response in Apulia (Southern Italy) with Global and Local LSTM-Based Groundwater Forecasting
by Lorenzo Di Taranto, Antonio Fiorentino, Angelo Doglioni and Vincenzo Simeone
Water 2025, 17(15), 2268; https://doi.org/10.3390/w17152268 - 30 Jul 2025
Viewed by 213
Abstract
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the [...] Read more.
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the shallow porous aquifer in Southern Italy. This aquifer is recharged by local rainfall, which exhibits minimal variation across the catchment in terms of volume and temporal distribution. To gain a deeper understanding of the complex interactions between precipitation and groundwater levels within the aquifer, we used water level data from six wells. Although these wells were not directly correlated in terms of individual measurements, they were geographically located within the same shallow aquifer and exhibited a similar hydrogeological response. The trained model uses two variables, rainfall and groundwater levels, which are usually easily available. This approach allowed the model, during the training phase, to capture the general relationships and common dynamics present across the different time series of wells. This methodology was employed despite the geographical distinctions between the wells within the aquifer and the variable duration of their observed time series (ranging from 27 to 45 years). The results obtained were significant: the global model, trained with the simultaneous integration of data from all six wells, not only led to superior performance metrics but also highlighted its remarkable generalization capability in representing the hydrogeological system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 1287 KiB  
Article
A Multidimensional and Integrated Rehabilitation Approach (A.M.I.R.A.) for Infants at Risk of Cerebral Palsy and Other Neurodevelopmental Disabilities
by Angela Maria Setaro, Erika Loi, Serena Micheletti, Anna Alessandrini, Nicole D’Adda, Andrea Rossi, Jessica Galli, AMIRA Group and Elisa Fazzi
Children 2025, 12(8), 1003; https://doi.org/10.3390/children12081003 - 30 Jul 2025
Viewed by 274
Abstract
Background/Objectives: Early experiences can significantly influence brain development, particularly when they occur during specific time windows known as sensitive or critical periods. Therefore, the early promotion of neurodevelopmental functions is crucial in children at risk for neurodevelopmental disabilities, such as those with cerebral [...] Read more.
Background/Objectives: Early experiences can significantly influence brain development, particularly when they occur during specific time windows known as sensitive or critical periods. Therefore, the early promotion of neurodevelopmental functions is crucial in children at risk for neurodevelopmental disabilities, such as those with cerebral palsy. This article introduces AMIRA (A Multidimensional and Integrated Rehabilitation Approach), a rehabilitative framework designed for infants at risk of neurodevelopmental disabilities. Methods: AMIRA is intended to guide clinical–rehabilitation reasoning rather than prescribe a rigid sequence of predetermined activities for the child. The theoretical foundation and structure of AMIRA are presented by formalizing its criteria, objectives, tools, and intervention procedures. The framework comprises four distinct sections, each supported by adaptive strategies to facilitate access to materials and to promote play-based interactions among the child, their environment, and communication partners. Particular attention is given to optimizing both micro- and macro-environments for children with, or at risk of, co-occurring visual impairment. Each rehabilitative section includes three progressive phases: an initial observation phase, a facilitation phase to support the child’s engagement, and an active experimentation phase that gradually introduces more challenging tasks. Results: The intervention pathways in AMIRA are organized according to six core developmental domains: behavioral–emotional self-regulation, visual function, postural–motor skills, praxis, interaction and communication, and cognitive function. These are outlined in structured charts that serve as flexible guidelines rather than prescriptive protocols. Each chart presents activities of increasing complexity aligned with typical developmental milestones up to 24 months of age. For each specific ability, the corresponding habilitation goals, contextual recommendations (including environmental setup, objects, and tools), and suggested activities are provided. Conclusions: This study presents a detailed intervention approach, offering both a practical framework and a structured set of activities for use in rehabilitative settings. Further studies will explore the efficacy of the proposed standardized approach. Full article
(This article belongs to the Section Pediatric Neurology & Neurodevelopmental Disorders)
Show Figures

Figure 1

16 pages, 1272 KiB  
Article
Correlations Between the Opioid System, Imidazoline Receptors, and EEG: An Investigation of Acquired Drug-Seeking Behaviors in Different Environments
by Gabriela Rusu-Zota, Dan Trofin, Cristina Gales and Elena Porumb-Andrese
Appl. Sci. 2025, 15(15), 8437; https://doi.org/10.3390/app15158437 - 29 Jul 2025
Viewed by 298
Abstract
The investigation of the reward system is a fascinating domain with future applications for pain therapy and understanding addiction. We investigated interactions between tramadol use and the imidazoline system, through the modulatory effects of imidazoline receptor blockers, by behavior analysis and electroencephalography (EEG). [...] Read more.
The investigation of the reward system is a fascinating domain with future applications for pain therapy and understanding addiction. We investigated interactions between tramadol use and the imidazoline system, through the modulatory effects of imidazoline receptor blockers, by behavior analysis and electroencephalography (EEG). Thirty-six male Wistar rats were placed within a conditioned place preference (CCP) setting using a three-compartment box apparatus. The transition of the six groups of subjects from one compartment to another was constantly monitored, related to preconditioning for one day, conditioning for eight days, and post-conditioning testing on day 10. During the conditioning phase, the groups received: a saline solution, efaroxan, idazoxan, tramadol, tramadol + efaroxan, and tramadol + idazoxan, respectively. The administration of efaroxan, idazoxan, or a saline solution in the non-preferred compartment did not alter the time spent by rats there. On the other hand, the administration of tramadol alone in the non-preferred compartment significantly increased the time spent by animals there (151.66 ± 11.69 s) post-conditioning as compared to preconditioning (34.5 ± 5.31 s) (p < 0.01), while the combination of efaroxan and tramadol significantly reduced its effect. After the combination with idazoxan, the effect of tramadol on increasing the time spent by the animal in the non-preferred compartment remained significantly higher than in the preconditioning phase. A significant increase in time spent in the non-preferred compartment demonstrates the existence of a CPP induction effect (by changing the preference). The effects of tramadol on the reward system can cause changes in the brain’s neuroplasticity, potentially leading to learned behaviors that promote drug seeking in previous non-preferred environments. Full article
(This article belongs to the Section Applied Neuroscience and Neural Engineering)
Show Figures

Figure 1

25 pages, 15689 KiB  
Article
Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region
by Muazzez Çelik Karakaya and Necati Karakaya
Minerals 2025, 15(8), 798; https://doi.org/10.3390/min15080798 (registering DOI) - 29 Jul 2025
Viewed by 284
Abstract
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since [...] Read more.
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since the 1970s. In this study, bauxite samples, collected from six different deposits were examined to determine their mineralogical and chemical composition, as well as their REE content, with the aim of identifying which bauxite types are enriched in REEs and assessing their economic potential. The samples included massive, oolitic, and brecciated bauxite types, which were analyzed using optical microscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF) and inductive coupled plasma-mass spectrometry (ICP-MS), field emission scanning electron microscopy (FESEM-EDX), and electron probe micro-analysis (EPMA). Massive bauxites were found to be more homogeneous in both mineralogical and chemical composition, predominantly composed of diaspore, boehmite, and rare gibbsite. Hematite is the most abundant iron oxide mineral in all bauxites, while goethite, rutile, and anatase occur in smaller quantities. Quartz, feldspar, kaolinite, dolomite, and pyrite were specifically determined in brecciated bauxites. Average oxide contents were determined as 52.94% Al2O3, 18.21% Fe2O3, 7.04% TiO2, and 2.69% SiO2. Na2O, K2O, and MgO values are typically below 0.5%, while CaO averages 3.54%. The total REE content of the bauxites ranged from 161 to 4072 ppm, with an average of 723 ppm. Oolitic-massive bauxites exhibit the highest REE enrichment. Cerium (Ce) was the most abundant REE, ranging from 87 to 453 ppm (avg. 218 ppm), followed by lanthanum (La), which reached up to 2561 ppm in some of the massive bauxite samples. LREEs such as La, Ce, Pr, and Nd were notably enriched compared to HREEs. The lack of a positive correlation between REEs and major element oxides, as well as with their occurrences in distinct association with Al- and Fe-oxides-hydroxides based on FESEM-EDS and EPMA analyses, suggests that the REEs are present as discrete mineral phases. Furthermore, these findings indicate that the REEs are not incorporated into the crystal structures of other minerals through isomorphic substitution or adsorption. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

28 pages, 3635 KiB  
Article
Optimizing Energy Performance of Phase-Change Material-Enhanced Building Envelopes Through Novel Performance Indicators
by Abrar Ahmad and Shazim Ali Memon
Buildings 2025, 15(15), 2678; https://doi.org/10.3390/buildings15152678 - 29 Jul 2025
Viewed by 437
Abstract
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation [...] Read more.
Over recent decades, phase-change materials (PCMs) have gained prominence as latent-heat thermal energy storage systems in building envelopes because of their high energy density. However, only PCMs that complete a full daily charge–discharge cycle can deliver meaningful energy and carbon-emission savings. This simulation study introduces a methodology that simultaneously optimizes PCM integration for storage efficiency, indoor thermal comfort, and energy savings. Two new indicators are proposed: overall storage efficiency (ECn), which consolidates heating and cooling-efficiency ratios into a single value, and the performance factor (PF), which quantifies the PCM’s effectiveness in maintaining thermal comfort. Using EnergyPlus v8.9 coupled with DesignBuilder, a residential ASHRAE 90.1 mid-rise apartment was modeled in six warm-temperate (Cfb) European cities for the summer period from June 1 to August 31. Four paraffin PCMs (RT-22/25/28/31 HC, 20 mm thickness) were tested under natural and controlled ventilation strategies, with windows opening 50% when outdoor air was at least 2 °C cooler than indoors. Simulation outputs were validated against experimental cubicle data, yielding a mean absolute indoor temperature error ≤ 4.5%, well within the ±5% tolerance commonly accepted for building thermal simulations. The optimum configuration—RT-25 HC with temperature-controlled ventilation—achieved PF = 1.0 (100% comfort compliance) in all six cities and delivered summer cooling-energy savings of up to 3376 kWh in Paris, the highest among the locations studied. Carbon-emission reductions reached 2254 kg CO2-e year−1, and static payback periods remained below the assumed 50-year building life at a per kg PCM cost of USD 1. The ECn–PF framework, therefore, provides a transparent basis for selecting cost-effective, energy-efficient, and low-carbon PCM solutions in warm-temperate buildings. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 225 KiB  
Article
Exploring Emotional Safety and Harm Among Hospitalized Patients: A Qualitative Study of Patients’ and Providers’ Perspectives
by Afsha Khan, Dildar Muhammad, Najma Naz, Sabiha Khanum and Awal Khan
Healthcare 2025, 13(15), 1842; https://doi.org/10.3390/healthcare13151842 - 29 Jul 2025
Viewed by 172
Abstract
Background: Emotional safety is increasingly recognized as crucial for high-quality patient care, encompassing a patient’s sense of security, courteous treatment, being heard, and a peaceful environment. Purpose: The purpose of this study was to explore the perceptions of patients and providers (doctors and [...] Read more.
Background: Emotional safety is increasingly recognized as crucial for high-quality patient care, encompassing a patient’s sense of security, courteous treatment, being heard, and a peaceful environment. Purpose: The purpose of this study was to explore the perceptions of patients and providers (doctors and nurses) regarding emotional harm and safety in relation to hospitalized patients. Methods: We conducted a qualitative study in public-sector teaching hospitals in Peshawar, Pakistan. Data were collected after we obtained informed consent using individual interviews with 15 providers, namely, doctors (n = 7) and nurses (n = 8), and five focus group discussions (FGDs) with 25 hospitalized patients. Data from both the interviews and FGDs were analyzed using Braun and Clarke’s six-phase approach to thematic analysis. Results: The key themes revealed by the providers’ perspectives were factors contributing to emotional harm, staff-related factors, coping mechanisms and solutions, and the impact of prior experiences and involvement. The main themes that emerged from the patients’ perspectives were anxiety upon admission, the impact of communication, emotional stress due to treatment delays, systemic/bureaucratic challenges, financial burden, a lack of emotional support, and post-hospitalization concerns. The consistent perspectives shared by both patients and providers included the impact of systemic factors, communication issues, the role of staff attitude/behavior, financial concerns, and the influence of prior experiences. Conclusions: This study highlights the complex interplay of systemic, staff-related, and patient-specific factors. It suggests a need to improve communication, staff support, administrative processes, financial counseling, emotional support integration, and discharge planning to minimize harm and create a patient-centered environment. Full article
(This article belongs to the Section Healthcare Quality and Patient Safety)
40 pages, 6652 KiB  
Systematic Review
How Architectural Heritage Is Moving to Smart: A Systematic Review of HBIM
by Huachun Cui and Jiawei Wu
Buildings 2025, 15(15), 2664; https://doi.org/10.3390/buildings15152664 - 28 Jul 2025
Viewed by 299
Abstract
Heritage Building Information Modeling (HBIM) has emerged as a key tool in advancing heritage conservation and sustainable management. Preceding reviews had typically concentrated on specific technical aspects but did not provide sufficient bibliometric analysis. This study aims to integrate existing HBIM research to [...] Read more.
Heritage Building Information Modeling (HBIM) has emerged as a key tool in advancing heritage conservation and sustainable management. Preceding reviews had typically concentrated on specific technical aspects but did not provide sufficient bibliometric analysis. This study aims to integrate existing HBIM research to identify key research patterns, emerging trends, and forecast future directions. A total of 1516 documents were initially retrieved from the Web of Science Core Collection using targeted search terms. Following a relevance screening, 1175 documents were related to the topic. CiteSpace 6.4.R1, VOSviewer 1.6.20, and Bibliometrix 4.1, three bibliometric tools, were employed to conduct both quantitative and qualitative assessments. The results show three historical phases of HBIM, identify core journals, influential authors, and leading regions, and extract six major keyword clusters: risk assessment, data acquisition, semantic annotation, digital twins, and energy and equipment management. Nine co-citation clusters further outline the foundational literature in the field. The results highlight growing scholarly interest in workflow integration and digital twin applications. Future projections emphasize the transformative potential of artificial intelligence in HBIM, while also recognizing critical implementation barriers, particularly in developing countries and resource-constrained contexts. This study provides a comprehensive and systematic framework for HBIM research, offering valuable insights for scholars, practitioners, and policymakers involved in heritage preservation and digital management. Full article
Show Figures

Figure 1

20 pages, 2901 KiB  
Article
Exploring the Use of Eye Tracking to Evaluate Usability Affordances: A Case Study on Assistive Device Design
by Vicente Bayarri-Porcar, Alba Roda-Sales, Joaquín L. Sancho-Bru and Margarita Vergara
Appl. Sci. 2025, 15(15), 8376; https://doi.org/10.3390/app15158376 - 28 Jul 2025
Viewed by 188
Abstract
This study explores the application of Eye-Tracking technology for the ergonomic evaluation of assistive device usability. Sixty-four participants evaluated six jar-opening devices in a two-phase study. First, the participants’ gaze was recorded while they viewed six rendered pictures of assistive devices, each shown [...] Read more.
This study explores the application of Eye-Tracking technology for the ergonomic evaluation of assistive device usability. Sixty-four participants evaluated six jar-opening devices in a two-phase study. First, the participants’ gaze was recorded while they viewed six rendered pictures of assistive devices, each shown in two different versions: with and without rubber in the grip area. Second, the participants physically interacted with the devices in a hands-on usability task. In both phases, participants rated the devices according to six usability affordances: robustness, comfort, easiness to grip, lid slippery, effort level, and easiness to use. Eye-Tracking metrics (fixation duration, number of fixations, and visit duration) correlated with the on-screen ratings, which aligned with ratings after using the physical devices. High ratings in comfort and effort level correlated with more visual attention to the grip area, where the rubber acted as key signifier. Heatmaps revealed the grip area as important for comfort and easiness to use and the lid area for robustness and slipperiness. These findings demonstrate the potential of Eye Tracking in usability studies, providing valuable insights for the ergonomic evaluation of assistive devices. Moreover, they highlight the suitability of Eye Tracking for early-stage design evaluation, offering objective metrics to guide design decisions and improve user experience. Full article
(This article belongs to the Special Issue Advances in Human–Machine Interaction)
Show Figures

Figure 1

14 pages, 3198 KiB  
Article
Small Nucleolar RNA from S. cerevisiae Binds to Phosphatidylinositol 4,5-Bisphosphate
by Irma A. Jiménez-Ramírez, Miguel A. Uc-Chuc, Luis Carlos Rodríguez Zapata and Enrique Castaño
Non-Coding RNA 2025, 11(4), 55; https://doi.org/10.3390/ncrna11040055 - 28 Jul 2025
Viewed by 196
Abstract
Background: snoRNAs have traditionally been known for their role as guides in post-transcriptional rRNA modifications. Previously, our research group identified several RNAs that may bind to PIP2 with LIPRNA-seq. Among them, snR191 stood out due to its potential specific interaction with this [...] Read more.
Background: snoRNAs have traditionally been known for their role as guides in post-transcriptional rRNA modifications. Previously, our research group identified several RNAs that may bind to PIP2 with LIPRNA-seq. Among them, snR191 stood out due to its potential specific interaction with this lipid, distinguishing itself from other snoRNAs. However, a detailed study is needed to define the molecular interactions between RNA and lipids, which remain unknown but may serve as a mechanism for transport or liquid–liquid phase separation. This study aimed to determine the interaction between a snoRNA called snR191 and PIP2. Method: A novel methodology for RNA-PIP2 interaction was carried out. Total RNA from Saccharomyces cerevisiae was incubated with PIP2-bound nitrocellulose membranes and RT-PCR reactions. We performed the prediction of snR191-PIP2 interaction by molecular docking and in silico mutations of snoR191. Results: From LIPRNA-seq analysis, we identified that PIP2-bound RNAs were significantly enriched in diverse biological processes, including transmembrane transport and redox functions. Our RNA-PIP2 interaction approach was successful. We demonstrated that snR191 specifically interacts with PIP2 in vitro. The elimination of DNA ensured that the interaction assay was RNA-specific, strengthening the robustness of the experiment. PIP2 was docked to snR191 in a stem–loop–stem motif. Six hydrogen bonds across four nucleotides mediated the PIP2-snR191 interaction. Finally, mutations in snR191 affected the structural folding. Conclusions: In this study, we demonstrate the effectiveness of a new methodology for determining RNA–lipid interactions, providing strong evidence for the specific interaction between snR191 and PIP2. Integrating biochemical and computational approaches has allowed us to understand the binding of these biomolecules. Therefore, this work significantly broadens our understanding of snR191-PIP2 interactions and opens new perspectives for further research. Full article
(This article belongs to the Section Long Non-Coding RNA)
Show Figures

Graphical abstract

Back to TopTop