Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = single molecule FRET

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3314 KiB  
Article
Observation of SAM-VI Riboswitch Dynamics Using Single-Molecule FRET
by Yanyan Xue, Yi Sun, Yichun Xia, Xiuming Liu and Hua Dai
Biomolecules 2025, 15(6), 841; https://doi.org/10.3390/biom15060841 - 9 Jun 2025
Viewed by 887
Abstract
Riboswitches regulate gene expression through intricate dynamic conformational transitions, with divalent cation Mg2+ and their ligands playing pivotal roles in this process. The dynamic structural mechanism by which the S-adenosyl-L-methionine (SAM) responsive SAM-VI riboswitch (riboSAM) regulates the downstream SAM synthase gene translation [...] Read more.
Riboswitches regulate gene expression through intricate dynamic conformational transitions, with divalent cation Mg2+ and their ligands playing pivotal roles in this process. The dynamic structural mechanism by which the S-adenosyl-L-methionine (SAM) responsive SAM-VI riboswitch (riboSAM) regulates the downstream SAM synthase gene translation remains unclear. In this study, we employed position-selective labeling of RNA (PLOR) to incorporate Cy3-Cy5 into designated positions of riboSAM, applying single-molecule Förster resonance energy transfer (smFRET) method to track its conformational switches in response to Mg2+ and SAM. smFRET analysis revealed that in the absence of Mg2+ and ligand, riboSAM predominantly adopted a translation-activating apo conformation. Physiological concentrations of Mg2+ induced riboSAM to fold into dynamic transit-p and holo-p states, creating a transient and structurally pliable binding pocket for ligand binding. SAM binding locks the dynamic transit-p and holo-p states into their final stable transit and holo conformations through conformational selection, turning off downstream cis-gene expression and completing feedback regulation of cellular SAM concentration. The observed synergistic regulatory effect of Mg2+ ions and ligand on riboSAM’s conformational dynamics at single-molecule resolution provides new mechanistic insights into gene regulation by diverse riboswitch classes. Full article
(This article belongs to the Collection Feature Papers in Biomacromolecules: Nucleic Acids)
Show Figures

Figure 1

18 pages, 4761 KiB  
Article
Fluorescence Resonance Energy Transfer for Drug Loading Assessment in Reconstituted High-Density Lipoprotein Nanoparticles
by R. Max Petty, Luca Ceresa, Emma Alexander, Danh Pham, Nirupama Sabnis, Rafal Fudala, Andras G. Lacko, Raghu R. Krishnamoorthy, Zygmunt Gryczynski and Ignacy Gryczynski
Int. J. Mol. Sci. 2025, 26(7), 3276; https://doi.org/10.3390/ijms26073276 - 1 Apr 2025
Viewed by 675
Abstract
Reconstituted high-density lipoprotein nanoparticles (NPs), which mimic the structure and function of endogenous human plasma HDL, hold promise as a robust drug delivery system. These nanoparticles, when loaded with appropriate agents, serve as powerful tools for targeted drug delivery. The fundamental challenge lies [...] Read more.
Reconstituted high-density lipoprotein nanoparticles (NPs), which mimic the structure and function of endogenous human plasma HDL, hold promise as a robust drug delivery system. These nanoparticles, when loaded with appropriate agents, serve as powerful tools for targeted drug delivery. The fundamental challenge lies in controlling and estimating the actual drug load and the efficiency of drug release at the target. In this report, we present a novel approach based on enhanced Förster Resonance Energy Transfer (FRET) to assess particle load and monitor payload release. The NPs are labeled with donor molecules embedded in the lipid phase, while the spherical core volume is filled with acceptor molecules. Highly enhanced FRET efficiency to multiple acceptors in the NP core has been observed at distances significantly larger than the characteristic Förster distance (R0). To confirm that the observed changes in donor and acceptor emissions are a result of FRET, we developed a theoretical model for nonradiative energy transfer from a single donor to multiple acceptors enclosed in a spherical core volume. The load-dependent shortening of the fluorescence lifetime of the donor correlated with the presence of a negative component in the intensity decay of the acceptor clearly demonstrates that FRET can occur at a large distance comparable to the nanoparticle size (over 100 Å). Comparison of theoretical simulations with the measured intensity decays of the donor and acceptor fluorophores constitute a new method for evaluating particle load. The observed FRET efficiency depends on the number of acceptors in the core, providing a simple way to estimate the nanoparticle load efficiency. Particle disintegration and load release result in a distinct change in donor and acceptor emissions. This approach constitutes a novel strategy for assessing NP core load, monitoring NP integrity, and evaluating payload release efficiency to target cells. Significants: In the last decade, nanoparticles have emerged as a promising strategy for targeted drug delivery, with applications ranging from cancer therapy to ocular neurodegenerative disease treatments. Despite their potential, a significant issue has been the real-time monitoring of these drug delivery vehicles within biological systems. Effective strategies for monitoring NP payload loading, NP integrity, and payload release are needed to assess the quality of new drug delivery systems. In our study, we have found that FRET-enabled NPs function as an improved method for monitoring these aspects currently missing from current drug delivery efforts. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

25 pages, 7225 KiB  
Review
Structural and Dynamical Properties of Nucleic Acid Hairpins Implicated in Trinucleotide Repeat Expansion Diseases
by Feng Pan, Pengning Xu, Christopher Roland, Celeste Sagui and Keith Weninger
Biomolecules 2024, 14(10), 1278; https://doi.org/10.3390/biom14101278 - 10 Oct 2024
Cited by 3 | Viewed by 2465
Abstract
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders—known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)—which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA [...] Read more.
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders—known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)—which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes. Of these, hairpin structures are the most prolific and are associated with the largest number of TREDs and have therefore been the focus of recent single-molecule FRET experiments and molecular dynamics investigations. Here, we review the structural and dynamical properties of nucleic acid hairpins that have emerged from these studies and the implications for repeat expansion mechanisms. The focus will be on CAG, GAC, CTG and GTC hairpins and their stems, their atomistic structures, their stability, and the important role played by structural interrupts. Full article
(This article belongs to the Section Molecular Structure and Dynamics)
Show Figures

Figure 1

17 pages, 685 KiB  
Article
Advanced Quantification of Receptor–Ligand Interaction Lifetimes via Single-Molecule FRET Microscopy
by Lukas Schrangl, Vanessa Mühlgrabner, René Platzer, Florian Kellner, Josephine Wieland, Reinhard Obst, José L. Toca-Herrera, Johannes B. Huppa, Gerhard J. Schütz and Janett Göhring
Biomolecules 2024, 14(8), 1001; https://doi.org/10.3390/biom14081001 - 13 Aug 2024
Viewed by 1614
Abstract
Receptor–ligand interactions at cell interfaces initiate signaling cascades essential for cellular communication and effector functions. Specifically, T cell receptor (TCR) interactions with pathogen-derived peptides presented by the major histocompatibility complex (pMHC) molecules on antigen-presenting cells are crucial for T cell activation. The binding [...] Read more.
Receptor–ligand interactions at cell interfaces initiate signaling cascades essential for cellular communication and effector functions. Specifically, T cell receptor (TCR) interactions with pathogen-derived peptides presented by the major histocompatibility complex (pMHC) molecules on antigen-presenting cells are crucial for T cell activation. The binding duration, or dwell time, of TCR–pMHC interactions correlates with downstream signaling efficacy, with strong agonists exhibiting longer lifetimes compared to weak agonists. Traditional surface plasmon resonance (SPR) methods quantify 3D affinity but lack cellular context and fail to account for factors like membrane fluctuations. In the recent years, single-molecule Förster resonance energy transfer (smFRET) has been applied to measure 2D binding kinetics of TCR–pMHC interactions in a cellular context. Here, we introduce a rigorous mathematical model based on survival analysis to determine exponentially distributed receptor–ligand interaction lifetimes, verified through simulated data. Additionally, we developed a comprehensive analysis pipeline to extract interaction lifetimes from raw microscopy images, demonstrating the model’s accuracy and robustness across multiple TCR–pMHC pairs. Our new software suite automates data processing to enhance throughput and reduce bias. This methodology provides a refined tool for investigating T cell activation mechanisms, offering insights into immune response modulation. Full article
Show Figures

Figure 1

21 pages, 4199 KiB  
Review
Mechanism of Viral DNA Packaging in Phage T4 Using Single-Molecule Fluorescence Approaches
by Souradip Dasgupta, Julie A. Thomas and Krishanu Ray
Viruses 2024, 16(2), 192; https://doi.org/10.3390/v16020192 - 26 Jan 2024
Cited by 1 | Viewed by 2781
Abstract
In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the [...] Read more.
In all tailed phages, the packaging of the double-stranded genome into the head by a terminase motor complex is an essential step in virion formation. Despite extensive research, there are still major gaps in the understanding of this highly dynamic process and the mechanisms responsible for DNA translocation. Over the last fifteen years, single-molecule fluorescence technologies have been applied to study viral nucleic acid packaging using the robust and flexible T4 in vitro packaging system in conjunction with genetic, biochemical, and structural analyses. In this review, we discuss the novel findings from these studies, including that the T4 genome was determined to be packaged as an elongated loop via the colocalization of dye-labeled DNA termini above the portal structure. Packaging efficiency of the TerL motor was shown to be inherently linked to substrate structure, with packaging stalling at DNA branches. The latter led to the design of multiple experiments whose results all support a proposed torsional compression translocation model to explain substrate packaging. Evidence of substrate compression was derived from FRET and/or smFRET measurements of stalled versus resolvase released dye-labeled Y-DNAs and other dye-labeled substrates relative to motor components. Additionally, active in vivo T4 TerS fluorescent fusion proteins facilitated the application of advanced super-resolution optical microscopy toward the visualization of the initiation of packaging. The formation of twin TerS ring complexes, each expected to be ~15 nm in diameter, supports a double protein ring–DNA synapsis model for the control of packaging initiation, a model that may help explain the variety of ring structures reported among pac site phages. The examination of the dynamics of the T4 packaging motor at the single-molecule level in these studies demonstrates the value of state-of-the-art fluorescent tools for future studies of complex viral replication mechanisms. Full article
(This article belongs to the Special Issue Phage Assembly Pathways — to the Memory of Lindsay Black 2.0)
Show Figures

Figure 1

28 pages, 8459 KiB  
Article
Interactions of Nucleosomes with Acidic Patch-Binding Peptides: A Combined Structural Bioinformatics, Molecular Modeling, Fluorescence Polarization, and Single-Molecule FRET Study
by Pavel D. Oleinikov, Anastasiia S. Fedulova, Grigoriy A. Armeev, Nikita A. Motorin, Lovepreet Singh-Palchevskaia, Anastasiia L. Sivkina, Pavel G. Feskin, Grigory S. Glukhov, Dmitry A. Afonin, Galina A. Komarova, Mikhail P. Kirpichnikov, Vasily M. Studitsky, Alexey V. Feofanov and Alexey K. Shaytan
Int. J. Mol. Sci. 2023, 24(20), 15194; https://doi.org/10.3390/ijms242015194 - 14 Oct 2023
Cited by 6 | Viewed by 3935
Abstract
In eukaryotic organisms, genomic DNA associates with histone proteins to form nucleosomes. Nucleosomes provide a basis for genome compaction, epigenetic markup, and mediate interactions of nuclear proteins with their target DNA loci. A negatively charged (acidic) patch located on the H2A-H2B histone dimer [...] Read more.
In eukaryotic organisms, genomic DNA associates with histone proteins to form nucleosomes. Nucleosomes provide a basis for genome compaction, epigenetic markup, and mediate interactions of nuclear proteins with their target DNA loci. A negatively charged (acidic) patch located on the H2A-H2B histone dimer is a characteristic feature of the nucleosomal surface. The acidic patch is a common site in the attachment of various chromatin proteins, including viral ones. Acidic patch-binding peptides present perspective compounds that can be used to modulate chromatin functioning by disrupting interactions of nucleosomes with natural proteins or alternatively targeting artificial moieties to the nucleosomes, which may be beneficial for the development of new therapeutics. In this work, we used several computational and experimental techniques to improve our understanding of how peptides may bind to the acidic patch and what are the consequences of their binding. Through extensive analysis of the PDB database, histone sequence analysis, and molecular dynamic simulations, we elucidated common binding patterns and key interactions that stabilize peptide–nucleosome complexes. Through MD simulations and FRET measurements, we characterized changes in nucleosome dynamics conferred by peptide binding. Using fluorescence polarization and gel electrophoresis, we evaluated the affinity and specificity of the LANA1-22 peptide to DNA and nucleosomes. Taken together, our study provides new insights into the different patterns of intermolecular interactions that can be employed by natural and designed peptides to bind to nucleosomes, and the effects of peptide binding on nucleosome dynamics and stability. Full article
(This article belongs to the Special Issue Nucleosome: From Structural and Functional Aspects to Clinic)
Show Figures

Graphical abstract

11 pages, 1997 KiB  
Article
Features of Protein Unfolding Transitions and Their Relation to Domain Topology Probed by Single-Molecule FRET
by Nuno Bustorff and Jörg Fitter
Biomolecules 2023, 13(9), 1280; https://doi.org/10.3390/biom13091280 - 22 Aug 2023
Cited by 1 | Viewed by 1758
Abstract
A protein fold is defined as a structural arrangement of a secondary structure in a three-dimensional space. It would be interesting to know whether a particular fold can be assigned to certain features of the corresponding folding/unfolding transitions. To understand the underlying principles [...] Read more.
A protein fold is defined as a structural arrangement of a secondary structure in a three-dimensional space. It would be interesting to know whether a particular fold can be assigned to certain features of the corresponding folding/unfolding transitions. To understand the underlying principles of the manifold folding transitions in more detail, single-molecule FRET is the method of choice. Taking the two-domain protein phosphoglycerate kinase (PGK) as an example, we investigated denaturant-induced unfolded states of PGK using the above method. For this purpose, different intramolecular distances within the two domains were measured. In addition to the known two-state transition, a transition with a compact folding intermediate was also identified in each of the two domains. Based on the structural homology of the domains (characterized by a Rossmann fold) and the striking similarity in the features of the measured distance changes during unfolding, clear evidence emerged that the underlying domain topology plays an important role in determining the observed structural changes. Full article
(This article belongs to the Special Issue Macromolecular Folding and Dynamics)
Show Figures

Figure 1

18 pages, 2828 KiB  
Article
Mechanism of ADP-Inhibited ATP Hydrolysis in Single Proton-Pumping FoF1-ATP Synthase Trapped in Solution
by Iván Pérez, Thomas Heitkamp and Michael Börsch
Int. J. Mol. Sci. 2023, 24(9), 8442; https://doi.org/10.3390/ijms24098442 - 8 May 2023
Cited by 5 | Viewed by 3327
Abstract
FoF1-ATP synthases in mitochondria, in chloroplasts, and in most bacteria are proton-driven membrane enzymes that supply the cells with ATP made from ADP and phosphate. Different control mechanisms exist to monitor and prevent the enzymes’ reverse chemical reaction of [...] Read more.
FoF1-ATP synthases in mitochondria, in chloroplasts, and in most bacteria are proton-driven membrane enzymes that supply the cells with ATP made from ADP and phosphate. Different control mechanisms exist to monitor and prevent the enzymes’ reverse chemical reaction of fast wasteful ATP hydrolysis, including mechanical or redox-based blockade of catalysis and ADP inhibition. In general, product inhibition is expected to slow down the mean catalytic turnover. Biochemical assays are ensemble measurements and cannot discriminate between a mechanism affecting all enzymes equally or individually. For example, all enzymes could work more slowly at a decreasing substrate/product ratio, or an increasing number of individual enzymes could be completely blocked. Here, we examined the effect of increasing amounts of ADP on ATP hydrolysis of single Escherichia coli FoF1-ATP synthases in liposomes. We observed the individual catalytic turnover of the enzymes one after another by monitoring the internal subunit rotation using single-molecule Förster resonance energy transfer (smFRET). Observation times of single FRET-labeled FoF1-ATP synthases in solution were extended up to several seconds using a confocal anti-Brownian electrokinetic trap (ABEL trap). By counting active versus inhibited enzymes, we revealed that ADP inhibition did not decrease the catalytic turnover of all FoF1-ATP synthases equally. Instead, increasing ADP in the ADP/ATP mixture reduced the number of remaining active enzymes that operated at similar catalytic rates for varying substrate/product ratios. Full article
Show Figures

Figure 1

35 pages, 2986 KiB  
Review
FRET Based Biosensor: Principle Applications Recent Advances and Challenges
by Awadhesh Kumar Verma, Ashab Noumani, Amit K. Yadav and Pratima R. Solanki
Diagnostics 2023, 13(8), 1375; https://doi.org/10.3390/diagnostics13081375 - 8 Apr 2023
Cited by 88 | Viewed by 16123
Abstract
Förster resonance energy transfer (FRET)-based biosensors are being fabricated for specific detection of biomolecules or changes in the microenvironment. FRET is a non-radiative transfer of energy from an excited donor fluorophore molecule to a nearby acceptor fluorophore molecule. In a FRET-based biosensor, the [...] Read more.
Förster resonance energy transfer (FRET)-based biosensors are being fabricated for specific detection of biomolecules or changes in the microenvironment. FRET is a non-radiative transfer of energy from an excited donor fluorophore molecule to a nearby acceptor fluorophore molecule. In a FRET-based biosensor, the donor and acceptor molecules are typically fluorescent proteins or fluorescent nanomaterials such as quantum dots (QDs) or small molecules that are engineered to be in close proximity to each other. When the biomolecule of interest is present, it can cause a change in the distance between the donor and acceptor, leading to a change in the efficiency of FRET and a corresponding change in the fluorescence intensity of the acceptor. This change in fluorescence can be used to detect and quantify the biomolecule of interest. FRET-based biosensors have a wide range of applications, including in the fields of biochemistry, cell biology, and drug discovery. This review article provides a substantial approach on the FRET-based biosensor, principle, applications such as point-of-need diagnosis, wearable, single molecular FRET (smFRET), hard water, ions, pH, tissue-based sensors, immunosensors, and aptasensor. Recent advances such as artificial intelligence (AI) and Internet of Things (IoT) are used for this type of sensor and challenges. Full article
Show Figures

Figure 1

12 pages, 2686 KiB  
Article
Interplay between Inter-Subunit Rotation of the Ribosome and Binding of Translational GTPases
by Ananya Das, Nichole Adiletta and Dmitri N. Ermolenko
Int. J. Mol. Sci. 2023, 24(8), 6878; https://doi.org/10.3390/ijms24086878 - 7 Apr 2023
Viewed by 2420
Abstract
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in [...] Read more.
Translational G proteins, whose release from the ribosome is triggered by GTP hydrolysis, regulate protein synthesis. Concomitantly with binding and dissociation of protein factors, translation is accompanied by forward and reverse rotation between ribosomal subunits. Using single-molecule measurements, we explore the ways in which the binding of translational GTPases affects inter-subunit rotation of the ribosome. We demonstrate that the highly conserved translation factor LepA, whose function remains debated, shifts the equilibrium toward the non-rotated conformation of the ribosome. By contrast, the catalyst of ribosome translocation, elongation factor G (EF-G), favors the rotated conformation of the ribosome. Nevertheless, the presence of P-site peptidyl-tRNA and antibiotics, which stabilize the non-rotated conformation of the ribosome, only moderately reduces EF-G binding. These results support the model suggesting that EF-G interacts with both the non-rotated and rotated conformations of the ribosome during mRNA translocation. Our results provide new insights into the molecular mechanisms of LepA and EF-G action and underscore the role of ribosome structural dynamics in translation. Full article
(This article belongs to the Special Issue Molecular Regulation and Mechanism of Ribonucleoprotein Complexes)
Show Figures

Figure 1

16 pages, 1855 KiB  
Review
Contribution of smFRET to Chromatin Research
by Bhaswati Sengupta and Mai Huynh
Biophysica 2023, 3(1), 93-108; https://doi.org/10.3390/biophysica3010007 - 8 Feb 2023
Viewed by 2839
Abstract
Chromatins are structural components of chromosomes and consist of DNA and histone proteins. The structure, dynamics, and function of chromatins are important in regulating genetic processes. Several different experimental and theoretical tools have been employed to understand chromatins better. In this review, we [...] Read more.
Chromatins are structural components of chromosomes and consist of DNA and histone proteins. The structure, dynamics, and function of chromatins are important in regulating genetic processes. Several different experimental and theoretical tools have been employed to understand chromatins better. In this review, we will focus on the literatures engrossed in understanding of chromatins using single-molecule Förster resonance energy transfer (smFRET). smFRET is a single-molecule fluorescence microscopic technique that can furnish information regarding the distance between two points in space. This has been utilized to efficiently unveil the structural details of chromatins. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

11 pages, 1566 KiB  
Article
Multiplexed smFRET Nucleic Acid Sensing Using DNA Nanotweezers
by Anisa Kaur, Roaa Mahmoud, Anoja Megalathan, Sydney Pettit and Soma Dhakal
Biosensors 2023, 13(1), 119; https://doi.org/10.3390/bios13010119 - 10 Jan 2023
Cited by 4 | Viewed by 3344
Abstract
The multiplexed detection of disease biomarkers is part of an ongoing effort toward improving the quality of diagnostic testing, reducing the cost of analysis, and accelerating the treatment processes. Although significant efforts have been made to develop more sensitive and rapid multiplexed screening [...] Read more.
The multiplexed detection of disease biomarkers is part of an ongoing effort toward improving the quality of diagnostic testing, reducing the cost of analysis, and accelerating the treatment processes. Although significant efforts have been made to develop more sensitive and rapid multiplexed screening methods, such as microarrays and electrochemical sensors, their limitations include their intricate sensing designs and semi-quantitative detection capabilities. Alternatively, fluorescence resonance energy transfer (FRET)-based single-molecule counting offers great potential for both the sensitive and quantitative detection of various biomarkers. However, current FRET-based multiplexed sensing typically requires the use of multiple excitation sources and/or FRET pairs, which complicates labeling schemes and the post-analysis of data. We present a nanotweezer (NT)-based sensing strategy that employs a single FRET pair and is capable of detecting multiple targets. Using DNA mimics of miRNA biomarkers specific to triple-negative breast cancer (TNBC), we demonstrated that the developed sensors are sensitive down to the low picomolar range (≤10 pM) and can discriminate between targets with a single-base mismatch. These simple hybridization-based sensors hold great promise for the sensitive detection of a wider spectrum of nucleic acid biomarkers. Full article
(This article belongs to the Special Issue Devices and Wearable Devices toward Innovative Applications)
Show Figures

Figure 1

10 pages, 2618 KiB  
Article
Single–Molecule Study of DNAzyme Reveals Its Intrinsic Conformational Dynamics
by Yiming Zhang, Zongzhou Ji, Xin Wang, Yi Cao and Hai Pan
Int. J. Mol. Sci. 2023, 24(2), 1212; https://doi.org/10.3390/ijms24021212 - 7 Jan 2023
Cited by 1 | Viewed by 2662
Abstract
DNAzyme is a class of DNA molecules that can perform catalytic functions with high selectivity towards specific metal ions. Due to its potential applications for biosensors and medical therapeutics, DNAzyme has been extensively studied to characterize the relationships between its biochemical properties and [...] Read more.
DNAzyme is a class of DNA molecules that can perform catalytic functions with high selectivity towards specific metal ions. Due to its potential applications for biosensors and medical therapeutics, DNAzyme has been extensively studied to characterize the relationships between its biochemical properties and functions. Similar to protein enzymes and ribozymes, DNAzymes have been found to undergo conformational changes in a metal–ion–dependent manner for catalysis. Despite the important role the conformation plays in the catalysis process, such structural and dynamic information might not be revealed by conventional approaches. Here, by using the single–molecule fluorescence resonance energy transfer (smFRET) technique, we were able to investigate the detailed conformational dynamics of a uranyl–specific DNAzyme 39E. We observed conformation switches of 39E to a folded state with the addition of Mg2+ and to an extended state with the addition of UO22+. Furthermore, 39E can switch to a more compact configuration with or without divalent metal ions. Our findings reveal that 39E can undergo conformational changes spontaneously between different configurations. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Figure 1

24 pages, 3519 KiB  
Article
Integration Host Factor Binds DNA Holliday Junctions
by Shawn H. Lin, Dacheng Zhao, Vivian Deng, Veronica K. Birdsall, Suzanne Ho, Olga Buzovetsky, Candice M. Etson and Ishita Mukerji
Int. J. Mol. Sci. 2023, 24(1), 580; https://doi.org/10.3390/ijms24010580 - 29 Dec 2022
Cited by 9 | Viewed by 2966
Abstract
Integration host factor (IHF) is a nucleoid-associated protein involved in DNA packaging, integration of viral DNA and recombination. IHF binds with nanomolar affinity to duplex DNA containing a 13 bp consensus sequence, inducing a bend of ~160° upon binding. We determined that IHF [...] Read more.
Integration host factor (IHF) is a nucleoid-associated protein involved in DNA packaging, integration of viral DNA and recombination. IHF binds with nanomolar affinity to duplex DNA containing a 13 bp consensus sequence, inducing a bend of ~160° upon binding. We determined that IHF binds to DNA Four-way or Holliday junctions (HJ) with high affinity regardless of the presence of the consensus sequence, signifying a structure-based mechanism of recognition. Junctions, important intermediates in DNA repair and homologous recombination, are dynamic and can adopt either an open or stacked conformation, where the open conformation facilitates branch migration and strand exchange. Using ensemble and single molecule Förster resonance energy transfer (FRET) methods, we investigated IHF-induced changes in the population distribution of junction conformations and determined that IHF binding shifts the population to the open conformation. Further analysis of smFRET dynamics revealed that even in the presence of protein, the junctions remain dynamic as fast transitions are observed for the protein-bound open state. Protein binding alters junction conformational dynamics, as cross correlation analyses reveal the protein slows the transition rate at 1 mM Mg2+ but accelerates the transition rate at 10 mM Mg2+. Stopped flow kinetic experiments provide evidence for two binding steps, a rapid, initial binding step followed by a slower step potentially associated with a conformational change. These measurements also confirm that the protein remains bound to the junction during the conformer transitions and further suggest that the protein forms a partially dissociated state that allows junction arms to be dynamic. These findings, which demonstrate that IHF binds HJs with high affinity and stabilizes junctions in the open conformation, suggest that IHF may play multiple roles in the processes of integration and recombination in addition to stabilizing bacterial biofilms. Full article
(This article belongs to the Special Issue Nuclear Genome Stability: DNA Replication and DNA Repair)
Show Figures

Figure 1

17 pages, 1759 KiB  
Article
Different Forms of Disorder in NMDA-Sensitive Glutamate Receptor Cytoplasmic Domains Are Associated with Differences in Condensate Formation
by Sujit Basak, Nabanita Saikia, David Kwun, Ucheor B. Choi, Feng Ding and Mark E. Bowen
Biomolecules 2023, 13(1), 4; https://doi.org/10.3390/biom13010004 - 20 Dec 2022
Cited by 5 | Viewed by 2639
Abstract
The N-methyl-D-aspartate (NMDA)-sensitive glutamate receptor (NMDAR) helps assemble downstream signaling pathways through protein interactions within the postsynaptic density (PSD), which are mediated by its intracellular C-terminal domain (CTD). The most abundant NMDAR subunits in the brain are GluN2A and GluN2B, which are associated [...] Read more.
The N-methyl-D-aspartate (NMDA)-sensitive glutamate receptor (NMDAR) helps assemble downstream signaling pathways through protein interactions within the postsynaptic density (PSD), which are mediated by its intracellular C-terminal domain (CTD). The most abundant NMDAR subunits in the brain are GluN2A and GluN2B, which are associated with a developmental switch in NMDAR composition. Previously, we used single molecule fluorescence resonance energy transfer (smFRET) to show that the GluN2B CTD contained an intrinsically disordered region with slow, hop-like conformational dynamics. The CTD from GluN2B also undergoes liquid–liquid phase separation (LLPS) with synaptic proteins. Here, we extend these observations to the GluN2A CTD. Sequence analysis showed that both subunits contain a form of intrinsic disorder classified as weak polyampholytes. However, only GluN2B contained matched patterning of arginine and aromatic residues, which are linked to LLPS. To examine the conformational distribution, we used discrete molecular dynamics (DMD), which revealed that GluN2A favors extended disordered states containing secondary structures while GluN2B favors disordered globular states. In contrast to GluN2B, smFRET measurements found that GluN2A lacked slow conformational dynamics. Thus, simulation and experiments found differences in the form of disorder. To understand how this affects protein interactions, we compared the ability of these two NMDAR isoforms to undergo LLPS. We found that GluN2B readily formed condensates with PSD-95 and SynGAP, while GluN2A failed to support LLPS and instead showed a propensity for colloidal aggregation. That GluN2A fails to support this same condensate formation suggests a developmental switch in LLPS propensity. Full article
Show Figures

Figure 1

Back to TopTop