Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = single layer solenoid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8342 KB  
Article
An FPGA-Based Networked Hybrid Valve Pneumatic System for a Multi-Layer Soft Sponge Robot
by Haiming Huang, Xujing Li, Yage Fan, Yang Liu and Linru Zhan
Appl. Sci. 2025, 15(23), 12373; https://doi.org/10.3390/app152312373 - 21 Nov 2025
Viewed by 229
Abstract
This study develops a robust pneumatic control system for soft robots that require multi-cavity coordination. It proposes an FPGA-based hybrid valve pneumatic system (HVPS) with networked control and multi-mode pressure regulation to enhance performance in complex tasks. The system integrates a hybrid valve [...] Read more.
This study develops a robust pneumatic control system for soft robots that require multi-cavity coordination. It proposes an FPGA-based hybrid valve pneumatic system (HVPS) with networked control and multi-mode pressure regulation to enhance performance in complex tasks. The system integrates a hybrid valve unit (a negative-pressure proportional valve + solenoid valves) to support four pressure regulation modes, implements an FPGA-based PWM/DAC control for scalability, and utilizes EtherCAT (Ethernet for Control Automation Technology) for real-time networked synchronization. The experimental results demonstrate that the HVPS can achieve variable-frequency PWM (VF-PPRM) and variable-duty-ratio PWM (VDR-PPRM), controlling a Multi-Layer Soft Sponge Robot (ML-SSR) to perform better crawling behaviors at frequencies ranging from 0.2 Hz to 0.33 Hz and duty ratios ranging from 30% to 50%. ML-SSRs could perform manipulation and synchronization following behavior using a closed-loop proportional regulation module (CPRM) and networked connection, with the mean square errors (MSEs) of 0.85 around the X-axis and 1.03 around the Y-axis. This work uniquely integrates FPGA-based hybrid valve control with EtherCAT networking, introduces multi-mode pressure regulation within a single pneumatic unit, and offers a scalable architecture for soft robotic systems, thereby enhancing the flexibility and performance of pneumatic control. Full article
Show Figures

Figure 1

23 pages, 2058 KB  
Article
Inductive Displacement Sensor Operating in an LC Oscillator System Under High Pressure Conditions—Basic Design Principles
by Janusz Nurkowski and Andrzej Nowakowski
Sensors 2025, 25(19), 6078; https://doi.org/10.3390/s25196078 - 2 Oct 2025
Viewed by 640
Abstract
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the [...] Read more.
The paper presents some design principles of an inductive displacement transducer for measuring the displacement of rock specimens under high hydrostatic pressure. It consists of a single-layer, coreless solenoid mounted directly onto the specimen and connected to an LC oscillator located outside the pressure chamber, in which it serves as the inductive component. The specimen’s deformation changes the coil’s length and inductance, thereby altering the oscillator’s resonant frequency. Paired with a reference coil, the system achieves strain resolution of ~100 nm at pressures exceeding 400 MPa. Sensor design challenges include both electrical parameters (inductance and resistance of the sensor, capacitance of the resonant circuit) and mechanical parameters (number and diameter of coil turns, their positional stability, wire diameter). The basic requirement is to achieve stable oscillations (i.e., a high Q-factor of the resonant circuit) while maintaining maximum sensor sensitivity. Miniaturization of the sensor and minimizing the tensile force at its mounting points on the specimen are also essential. Improvement of certain sensor parameters often leads to the degradation of others; therefore, the design requires a compromise depending on the specific measurement conditions. This article presents the mathematical interdependencies among key sensor parameters, facilitating optimized sensor design. Full article
(This article belongs to the Topic AI Sensors and Transducers)
Show Figures

Figure 1

18 pages, 7115 KB  
Article
Inductive Sensor Characteristics for Conductivity Measurement of Non-Ferromagnetic Metals Based on Single-Layer Solenoid
by Huan Wang, Ziyi Han, Yongjian Chen, Shuyu Li, Haoran Li, Hao Shen and Chunlong Xu
Sensors 2025, 25(17), 5566; https://doi.org/10.3390/s25175566 - 6 Sep 2025
Viewed by 1411
Abstract
For the measurement of electrical conductivity of metal materials, the traditional contact measurement method has a limited test range and requires periodic electronic calibration. In order to overcome the above shortcomings, this paper takes the inductive response of an RLC circuit driven by [...] Read more.
For the measurement of electrical conductivity of metal materials, the traditional contact measurement method has a limited test range and requires periodic electronic calibration. In order to overcome the above shortcomings, this paper takes the inductive response of an RLC circuit driven by alternating sources as the research object and proposes a non-contact method for conductivity measurement of non-ferromagnetic metals engaged by a single-layer solenoid sensor. The effect of the circuit parameters on the inductive sensor characteristics has been described with different resonant modes, and the electric conductivities of different metals can be theoretically calculated based on eddy current. Moreover, the Comsol Multiphysics software is used to conduct finite element analysis to compare the experimental results and the simulation, which is consistent with the theoretical analysis. The measured accuracy of the inductive sensor is verified to be higher than 91% in parallel resonance, which exhibits higher stability and precision than that of series mode. The implementation of this project will provide the theoretical basis and data reference for the detection of electromagnetic properties of unknown metals and has a wide range of applications in non-destructive testing, engineering construction detection, and other fields. Full article
Show Figures

Figure 1

15 pages, 8086 KB  
Article
Analysis of Measurements of the Magnetic Flux Density in Steel Blocks of the Compact Muon Solenoid Magnet Yoke with Solenoid Coil Fast Discharges
by Vyacheslav Klyukhin, Benoit Curé, Andrea Gaddi, Antoine Kehrli, Maciej Ostrega and Xavier Pons
Symmetry 2024, 16(12), 1689; https://doi.org/10.3390/sym16121689 - 19 Dec 2024
Viewed by 1447
Abstract
The general-purpose Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN is used to study the production of new particles in proton–proton collisions at an LHC center of mass energy of 13.6 TeV. The detector includes a magnet based [...] Read more.
The general-purpose Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN is used to study the production of new particles in proton–proton collisions at an LHC center of mass energy of 13.6 TeV. The detector includes a magnet based on a 6 m diameter superconducting solenoid coil operating at a current of 18.164 kA. This current creates a central magnetic flux density of 3.8 T that allows for the high-precision measurement of the momenta of the produced charged particles using tracking and muon subdetectors. The CMS magnet contains a 10,000 ton flux-return yoke of dodecagonal shape made from the assembly of construction steel blocks distributed in several layers. These steel blocks are magnetized with the solenoid returned magnetic flux and wrap the muons escaping the hadronic calorimeters of total absorption. To reconstruct the muon trajectories, and thus to measure the muon momenta, the drift tube and cathode strip chambers are located between the layers of the steel blocks. To describe the distribution of the magnetic flux in the magnet yoke layers, a three-dimensional computer model of the CMS magnet is used. To validate the calculations, special measurements are performed, with the flux loops wound in 22 cross-sections of the flux-return yoke blocks. The measured voltages induced in the flux loops during the CMS magnet ramp-ups and -downs, as well as during the superconducting coil fast discharges, are integrated over time to obtain the initial magnetic flux densities in the flux loop cross-sections. The measurements obtained during the seven standard ramp-downs of the magnet were analyzed in 2018. From that time, three fast discharges occurred during the standard ramp-downs of the magnet. This allows us to single out the contributions of the eddy currents, induced in steel, to the flux loop voltages registered during the fast discharges of the coil. Accounting for these contributions to the flux loop measurements during intentionally triggered fast discharges in 2006 allows us to perform the validation of the CMS magnet computer model with better precision. The technique for the flux loop measurements and the obtained results are presented and discussed. The method for measuring magnetic flux density in steel blocks described in this study is innovative. The experience of 3D modeling and measuring the magnetic field in steel blocks of the magnet yoke, as part of a muon detector system, has good prospects for use in the construction and operation of particle detectors for the Future Circular Electron–Positron Collider and the Circular Electron–Positron Collider. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

26 pages, 21386 KB  
Article
Fluidic-Oscillator-Based Pulsed Jet Actuators for Flow Separation Control
by Stephan Löffler, Carola Ebert and Julien Weiss
Fluids 2021, 6(4), 166; https://doi.org/10.3390/fluids6040166 - 20 Apr 2021
Cited by 19 | Viewed by 5431
Abstract
The control of flow separation on aerodynamic surfaces remains a fundamental goal for future air transportation. On airplane wings and control surfaces, the effects of flow separation include decreased lift, increased drag, and enhanced flow unsteadiness and noise, all of which are detrimental [...] Read more.
The control of flow separation on aerodynamic surfaces remains a fundamental goal for future air transportation. On airplane wings and control surfaces, the effects of flow separation include decreased lift, increased drag, and enhanced flow unsteadiness and noise, all of which are detrimental to flight performance, fuel consumption, and environmental emissions. Many types of actuators have been designed in the past to counter the negative effects of flow separation, from passive vortex generators to active methods like synthetic jets, plasma actuators, or sweeping jets. At the Chair of Aerodynamics at TU Berlin, significant success has been achieved through the use of pulsed jet actuators (PJA) which operate by ejecting a given amount of fluid at a specified frequency through a slit-shape slot on the test surface, thereby increasing entrainment and momentum in a separating boundary layer and thus delaying flow separation. Earlier PJAs were implemented using fast-switching solenoid valves to regulate the jet amplitude and frequency. In recent years, the mechanical valves have been replaced by fluidic oscillators (FO) in an attempt to generate the desired control authority without any moving parts, thus paving the way for future industrial applications. In the present article, we present in-depth flow and design analysis which affect the operation of such FO-based PJAs. We start by reviewing current knowledge on the mechanism of flow separation control with PJAs before embarking on a detailed analysis of single-stage FO-based PJAs. In particular, we show that there is a fundamental regime where the oscillation frequency is mainly driven by the feedback loop length. Additionally, there are higher-order regimes where the oscillation frequency is significantly increased. The parameters that influence the oscillation in the different regimes are discussed and a strategy to incorporate this new knowledge into the design of future actuators is proposed. Full article
(This article belongs to the Special Issue Fluidic Oscillators-Devices and Applications)
Show Figures

Figure 1

14 pages, 3958 KB  
Article
Quantitative Analysis of Insulator Degradation in a Single Layer Solenoid by Renormalization of the Transmission Parameter
by Kwangho Kim, JunHee Han, Jangbom Chai and Wansoo Nah
Electronics 2020, 9(11), 1984; https://doi.org/10.3390/electronics9111984 - 23 Nov 2020
Cited by 1 | Viewed by 2380
Abstract
In this paper, a novel method to quantitatively analyze insulator degradation in a single layer solenoid is proposed. The suggested method employs renormalization of scattering parameters to efficiently detect changes of permittivity in a degraded solenoid. Firstly, a transmission line model, including a [...] Read more.
In this paper, a novel method to quantitatively analyze insulator degradation in a single layer solenoid is proposed. The suggested method employs renormalization of scattering parameters to efficiently detect changes of permittivity in a degraded solenoid. Firstly, a transmission line model, including a locally degraded part in the insulator, was developed, and it was determined that the phase information of the transmission parameter was very informative to check the permittivity change in the transmission line. To check the workability of this idea in a solenoid, a 30-turn single-layer solenoid was designed and fabricated, and 51 degraded states for mimicking insulation deterioration in each turn were introduced by installing additional insulator rings, which increased local relative permittivity. The phase data of the measured transmission parameter turned out to be useful for quantifying changes of the insulator in the solenoid. To maximize the detectability, the measured scattering parameters were renormalized with different reference impedances, which was very useful for detecting degradation in the transmission parameter. In this paper, detailed procedures for quantitatively analyzing degradation of an insulator are proposed and we verify that the suggested renormalization technique is very promising for effectively evaluating the degradation of a solenoid. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

Back to TopTop