Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = silicon isotopes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7813 KB  
Article
Fe–Si–O Isotope Characteristics and Ore Formation Mechanisms of the Hugushan Area BIF-Type Iron Deposits in the Central North China Craton
by Ende Wang, Deqing Zhang, Jinpeng Luan, Yekai Men, Ran Wang, Jianming Xia and Suibo Zhang
Minerals 2025, 15(9), 996; https://doi.org/10.3390/min15090996 - 19 Sep 2025
Viewed by 738
Abstract
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a [...] Read more.
The Hugushan banded iron formation (BIF) is one of the most representative iron ore deposits in the central part of the North China Craton, and its ore formation mechanism remains highly controversial. This study presents whole-rock and Fe–Si–O isotope geochemical evidence, offering a new perspective on the ore formation mechanism of the Hugushan BIFs. The samples from the upper and lower parts of the Hugushan BIFs are characterized by slight enrichment of heavy and light Fe isotopes, respectively. Additionally, the samples from the upper part of the Hugushan BIFs show characteristics of slightly positive Ce anomalies and negative La anomalies, suggesting that the shallow ancient seawater was in a partially oxidized state, whereas the deep seawater remained in a reductive environment during the depositional period. The low Al2O3 and TiO2 concentrations, as well as the depletion of Zr and Hf in the Hugushan BIFs, suggest that the contribution of terrestrial detrital materials to deposition is extremely limited. The BIFs all exhibit positive Eu anomalies, and the quartz in the BIFs is depleted in 30Si, a characteristic similar to that observed in siliceous rocks formed in hydrothermal vent environments and during hydrothermal plume activity. Additionally, the δ18O values of quartz in Hugushan BIFs are similar to the O isotope compositions of hydrothermal sedimentary siliceous rocks, further suggesting that the silicon in BIFs originates primarily from seafloor hydrothermal activity. The combination of Eu/Sm, Sm/Yb, and Y/Ho ratios indicates that the major components (iron and silica) of the Hugushan Iron Ore Deposit originated from the mixing of high-temperature hydrothermal fluids with seawater, with the hydrothermal fluid contributing slightly less than 0.1%. The magnetite and quartz bands in the BIFs exhibit inhomogeneous and covariant δ56Fe and δ30Si isotope characteristics, suggesting that the alternating siliceous and ferruginous layers are products of original chemical deposition in the ocean. Periodic hydrothermal activity and ocean transgression caused the recurring deposition of siliceous and ferruginous layers, resulting in the characteristic banded structure of the Hugushan Iron Ore Deposit. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

34 pages, 12770 KB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 759
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 6412 KB  
Article
Geochemistry and Zircon U-Pb Chronology of West Kendewula Late Paleozoic A-Type Granites in the East Kunlun Orogenic Belt: Implications for Post-Collision Extension
by Bang-Shi Dong, Wen-Qin Wang, Gen-Hou Wang, Pei-Lie Zhang, Peng-Sheng Li, Zhao-Lei Ding, Ze-Jun He, Pu Zhao, Jing-Qi Zhang and Chao Bo
Appl. Sci. 2025, 15(12), 6661; https://doi.org/10.3390/app15126661 - 13 Jun 2025
Viewed by 1185
Abstract
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites [...] Read more.
The Late Paleozoic granitoids widely distributed in the central section of the East Kunlun Orogenic Belt (EKOB) are responsible for the constraints on its post-collisional extensional processes. We report the whole-rock geochemical compositions, zircon U-Pb ages, and zircon Hf isotope data of granites in the western Kendewula area. The granites, dated between 413.7 Ma and 417.7 Ma, indicate emplacement during the Early Devonian period. The granite is characterized by high silicon content (72.45–78.96 wt%), high and alkali content (7.59–9.35 wt%), high 10,000 × Ga/Al values, and low Al2O3 (11.29–13.32 wt%), CaO (0.07–0.31 wt%), and MgO contents (0.16–0.94 wt%). The rocks exhibit enrichment in large-ion lithophile element (LILE) content and high-field-strength element (HFSE) content, in addition to strong losses, showing significant depletion in Ba, Sr, P and Eu. These geochemical characteristics correspond to A2-type granites. The values of Rb/N and Ba/La and the higher zircon saturation temperature (800~900 °C) indicate that the magma source is mainly crustal, with the participation of mantle materials, although limited. In addition, the zircon εHf(t) values (−4.3–3.69) also support this view. In summary, the A2-type granite exposed in the western Kendewula region formed against a post-collisional extensional setting background, suggesting that the Southern Kunlun Terrane (SKT) entered a post-orogenic extensional phase in the evolution stage since the Early Devonian. The upwelling of the asthenospheric mantle of the crust, triggered by crustal detachment and partial melting, likely contributed to the flare-up of A2-type granite during this period. By studying the nature of granite produced during orogeny, the evolution process of the formation of orogenic belts is discussed, and our understanding of orogenic is enhanced. Full article
(This article belongs to the Special Issue Technologies and Methods for Exploitation of Geological Resources)
Show Figures

Figure 1

16 pages, 2854 KB  
Article
Optimal Selection and Experimental Verification of Wide-Bandgap Semiconductor for Betavoltaic Battery
by Jiachen Zhang, Kunlun Lv, Yuan Yin, Yuqian Gao, Ye Tian, Yuncheng Han and Jun Tang
Nanomaterials 2025, 15(9), 635; https://doi.org/10.3390/nano15090635 - 22 Apr 2025
Cited by 3 | Viewed by 3606
Abstract
Wide-bandgap semiconductor betavoltaic batteries have a promising prospect in Micro-Electro-Mechanical Systems for high power density and long working life, but their material selection is still controversial. Specifically, the silicon carbide (SiC) betavoltaic battery was reported to have higher efficiency, although its bandgap is [...] Read more.
Wide-bandgap semiconductor betavoltaic batteries have a promising prospect in Micro-Electro-Mechanical Systems for high power density and long working life, but their material selection is still controversial. Specifically, the silicon carbide (SiC) betavoltaic battery was reported to have higher efficiency, although its bandgap is lower than that of gallium nitride (GaN) or diamond, which is inconsistent with general assumptions. In this work, the effects of different semiconductor characteristics on the battery energy conversion process are systematically analyzed to explain this phenomenon, including beta particle energy deposition, electron–hole pair (EHP) creation energy and EHPs collection efficiency. Device efficiencies of the betavoltaic battery using SiC, GaN, diamond, gallium oxide (Ga2O3), aluminum nitride (AlN) and boron nitride (BN) are compared to determine the optimum semiconductor. Results show that SiC for the betavoltaic battery has higher efficiency than GaN, Ga2O3 and AlN because of higher EHPs collection efficiency, less energy loss and fewer material defects, which is the optimal selection currently. SiC betavoltaic batteries were prepared, with the device efficiency having reached 14.88% under an electron beam, and the device efficiency recorded as 7.31% under an isotope source, which are consistent with the predicted results. This work provides a theoretical and experimental foundation for the material selection of betavoltaic batteries. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

24 pages, 10810 KB  
Article
Petrogenesis of the Shibaogou Mo-W-Associated Porphyritic Granite, West Henan, China: Constrains from Geochemistry, Zircon U-Pb Chronology, and Sr-Nd-Pb Isotopes
by Zhiwei Qiu, Zhenju Zhou, Nan Qi, Pocheng Huang, Junming Yao, Yantao Feng and Yanjing Chen
Minerals 2024, 14(11), 1173; https://doi.org/10.3390/min14111173 - 19 Nov 2024
Cited by 1 | Viewed by 1372
Abstract
The Shibaogou pluton, located in the Luanchuan orefield of western Henan Province in China, is a typical porphyritic granite within the Yanshanian “Dabie-type” Mo metallogenic system. It is mainly composed of porphyritic monzogranite and porphyritic syenogranite. Zircon U-Pb dating results indicate emplacement ages [...] Read more.
The Shibaogou pluton, located in the Luanchuan orefield of western Henan Province in China, is a typical porphyritic granite within the Yanshanian “Dabie-type” Mo metallogenic system. It is mainly composed of porphyritic monzogranite and porphyritic syenogranite. Zircon U-Pb dating results indicate emplacement ages of 150.1 ± 1.3 Ma and 151.0 ± 1.1 Ma for the monzogranite and 148.1 ± 1.0 Ma and 148.5 ± 1.3 Ma for the syenogranite. The pluton is characterized by geochemical features of high silicon, metaluminous, and high-K calc-alkaline compositions, enriched in Rb, U, Th, and Pb, and exhibits high Sr/Y (18.53–58.82), high (La/Yb)N (9.01–35.51), and weak Eu anomalies. These features indicate a source region from a thickened lower crust with garnet and rutile as residual phases at depths of approximately 40–60 km. Sr-Nd-Pb isotopic analyses suggest that the magmatic source is mainly derived from the Taihua and Xiong’er Groups of the Huaxiong Block, mixed with juvenile crustal rocks from the Kuanping and Erlangping Groups of the North Qinling Accretion Belt. Combined with geological and isotopic characteristics, it is concluded that the Shibaogou pluton formed during the compression–extension transition period associated with the collision between the Yangtze Block and the North China Craton, reflecting the complex partial melting processes in the thickened lower crust. The present study reveals that the magmatic–hydrothermal activity at Shibaogou lasted approximately 5 Ma, showing multi-phase characteristics, further demonstrating the close relationship between the pluton and the Mo-W mineralization. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

15 pages, 7687 KB  
Article
Enrichment Mechanism of Polymetallic Elements at the Base of the Niutitang Formation in Southeast Chongqing
by Guozhi Wang, Can Zhang, Dayong Liu, Linfei Qiu, Ziying Li and Ping’an Peng
Minerals 2024, 14(10), 978; https://doi.org/10.3390/min14100978 - 28 Sep 2024
Viewed by 1290
Abstract
Polymetallic enrichment layers are commonly found at the base of the Lower Cambrian and extensively distributed across the Upper Yangtze Platform, yet their genetic models remain controversial. This study systematically collected samples from a typical section in the southeastern Chongqing region for mineral, [...] Read more.
Polymetallic enrichment layers are commonly found at the base of the Lower Cambrian and extensively distributed across the Upper Yangtze Platform, yet their genetic models remain controversial. This study systematically collected samples from a typical section in the southeastern Chongqing region for mineral, organic, and inorganic analyses. It investigates the relationship between the abundance of various trace metal elements and organic matter at the base of the Niutitang Formation, as well as the vertical distribution characteristics of organic carbon isotopes and organic matter features. The results indicate that the Niutitang Formation shale exhibits a distinct three-part structure from bottom to top. Various metal elements are enriched in the lower interval, showing a close correlation between the abundance of polymetallic elements and the carbon isotopes of shale organic matter. The middle interval contains the highest TOC value and the lowest Ti/Al ratio, while the upper interval shows a significant decrease in organic matter abundance, with a clear positive correlation between the excess silicon content and Ti/Al ratio. Additionally, the mixing effect of deep-sea upwelling is the primary control on the formation of polymetallic enrichment layers in the lower interval, followed by the adsorption of organic matter under anoxic conditions. The sedimentary environment of the upper interval of the Niutitang Formation trends toward oxidation, with paleoclimate shifting toward colder and drier conditions, exhibiting aeolian sedimentary features that are unfavorable for the enrichment of trace metal elements. Consequently, upwelling is a key factor in the enrichment and mineralization of trace metal elements at the base of the Lower Cambrian in the Upper Yangtze region. Full article
Show Figures

Figure 1

26 pages, 11394 KB  
Review
Germanium Single Crystals for Photonics
by Grigory Kropotov, Vladimir Rogalin and Ivan Kaplunov
Crystals 2024, 14(9), 796; https://doi.org/10.3390/cryst14090796 - 9 Sep 2024
Cited by 2 | Viewed by 3112
Abstract
Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for [...] Read more.
Germanium (Ge) is a system-forming material of IR photonics for the atmospheric transparency window of 8–14 µm. For optics of the 3–5 µm range, more widespread silicon (Si), which has phonon absorption bands in the long-wave region, is predominantly used. A technology for growing Ge single crystals has been developed, allowing the production of precision optical parts up to 500 mm in diameter. Ge is used primarily for the production of transparent optical parts for thermal imaging devices in the 8–14 µm range. In addition, germanium components are widely used in a large number of optical devices where such properties as mechanical strength, good thermal properties, and climatic resistance are required. A very important area of application of germanium is nonlinear optics, primarily acousto-optics. The influence of doping impurities and temperature on the absorption of IR radiation in germanium is considered in detail. The properties of germanium photodetectors are reported, primarily on the effect of photon drag of holes. Optical properties in the THz range are considered. The features of optical properties for all five stable isotopes of germanium are studied. The isotopic shift of absorption bands in the IR region, caused by phonon phenomena, which was discovered by the authors for the first time, is considered. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

31 pages, 3091 KB  
Review
Silicon-28-Tetrafluoride as an Educt of Isotope-Engineered Silicon Compounds and Bulk Materials for Quantum Systems
by Owen C. Ernst, David Uebel, Roman Brendler, Konstantin Kraushaar, Max Steudel, Jörg Acker and Edwin Kroke
Molecules 2024, 29(17), 4222; https://doi.org/10.3390/molecules29174222 - 5 Sep 2024
Cited by 3 | Viewed by 5691
Abstract
This review provides a summary of the existing literature on a crucial raw material for the production of isotopically pure semiconductors, which are essential for the development of second-generation quantum systems. Silicon-28-tetrafluoride (28SiF4) is used as an educt for [...] Read more.
This review provides a summary of the existing literature on a crucial raw material for the production of isotopically pure semiconductors, which are essential for the development of second-generation quantum systems. Silicon-28-tetrafluoride (28SiF4) is used as an educt for several isotope-engineered chemicals, such as silane-28 (28SiH4) and silicon-28-trichloride (28SiHCl3), which are needed in the pursuit of various quantum technologies. We are exploring the entire chain from the synthesis of 28SiF4 to quantum applications. This includes the chemical properties of SiF4, isotopic enrichment, conversion to silanes, conversion to bulk 28Si and thin films, the physical properties of 28Si (spin neutrality, thermal conductivity, optical properties), and the applications in quantum computing, photonics, and quantum sensing techniques. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Figure 1

17 pages, 15482 KB  
Article
Geochemical Features, Origin, and Depositional Environment of Late Ordovician–Early Silurian Wufeng and Longmaxi Formation Cherts in the Southeastern Sichuan Basin
by Xiangying Ge, Chuanlong Mou, Xin Men, Qiyu Wang, Qian Hou, Binsong Zheng and Feifei Chen
Minerals 2024, 14(8), 745; https://doi.org/10.3390/min14080745 - 25 Jul 2024
Cited by 2 | Viewed by 1500
Abstract
The Sichuan Basin in Southeastern China contains extensive bedded cherts dating back to the Late Ordovician–Early Silurian period. To investigate the origin and depositional environment of these cherts, we conducted a comprehensive study using field observations, thin sections microscopic, silicon isotope analysis, and [...] Read more.
The Sichuan Basin in Southeastern China contains extensive bedded cherts dating back to the Late Ordovician–Early Silurian period. To investigate the origin and depositional environment of these cherts, we conducted a comprehensive study using field observations, thin sections microscopic, silicon isotope analysis, and major and trace element geochemistry of samples from three sections. Our results indicate that the cherts from Wufeng and Longmaxi formations are non-hydrothermal, normal biogenic seawater deposits mainly affected by terrigenous input and slightly associated with volcanic ash. Al2O3/(Al2O3 + Fe2O3T) and LaN/CeN ratios, δCe values and Fe2O3T/TiO2 − Al2O3/(Al2O3 + Fe2O3T), Fe2O3T/(100 − SiO2) − Al2O3/(100 − SiO2), 100 × (Fe2O3T/SiO2) – 100 × (Al2O3/SiO2), and LaN/CeN − Al2O3/(Al2O3 + Fe2O3T) discrimination diagrams indicated that the bedded cherts deposited in the continental margin environment. Full article
(This article belongs to the Special Issue Environment and Geochemistry of Sediments, 2nd Edition)
Show Figures

Figure 1

20 pages, 13649 KB  
Article
Zircon U-Pb Dating, Geochemistry, Lu-Hf Isotope Characteristics, and Geological Significance of Volcanic Rocks in Zhenghe Fozi Mountain National Geopark, Fujian, China
by Nan Chen, Dunpeng Li, Yanna Huang, Yihang Fu, Xiaomin Yang and Hanbin Wang
Minerals 2024, 14(6), 616; https://doi.org/10.3390/min14060616 - 17 Jun 2024
Viewed by 2428
Abstract
Fozi Mountain National Geopark is located in Zhenghe County in the northern region of Fujian Province, where the volcanic rocks of the Zhaixia Formation of the Shimaoshan Group are exposed. Zircon U-Pb dating and geochemical analysis were carried out to constrain its age [...] Read more.
Fozi Mountain National Geopark is located in Zhenghe County in the northern region of Fujian Province, where the volcanic rocks of the Zhaixia Formation of the Shimaoshan Group are exposed. Zircon U-Pb dating and geochemical analysis were carried out to constrain its age and tectonic environment. The results show that three zircon U-Pb dating samples have attained ages of 99.2 ± 1.0 Ma, 99.6 ± 0.8 Ma, and 99.7 ± 2.0 Ma. Volcanic rocks in the core scenic area of Fozi Mountain were formed during the Late Cretaceous period. Elemental analysis showed that these volcanic rocks were dominated by the shoshonite series. They include gray dacite porphyry, grayish-white breccia tuff, volcanic agglomerate, and gray tuffaceous sandstone. These rocks were characterized by high silicon, high alkali content, and rich potassium levels. Lu-Hf isotope analysis of zircons revealed that their εHf(t) values varied from −8.7 to −6.8. The corresponding TDM2 values were primarily distributed in the range of 1.71 Ga to 1.59 Ga. These findings indicated that the magma primarily originated from the partial melting of the Mesoproterozoic crystalline basement, accompanied by a small number of mantle-derived materials. Tectonic environment analysis indicated that these rocks were formed in the post-orogenic intraplate extensional environment, which was associated with the back-arc extension or lithospheric thinning caused by the subduction of the paleo-Pacific plate beneath the Eurasian plate. The formation of these volcanic rocks was attributed to post-orogenic magmatism. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

21 pages, 8608 KB  
Article
Origin and Geological Implications of Monzogranites and Rhyolitic Porphyries in the Wunugetu Porphyry Copper–Molybdenum Deposit, Northeast China: Evidence from Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry
by Qingshuang Wang, Yanchen Yang, Qiulin Fu, Zhongyue Zhang, Xiaodan Guo, Taotao Wu, Lu Chai, Yongheng Zhou and Yonghai An
Minerals 2024, 14(3), 310; https://doi.org/10.3390/min14030310 - 15 Mar 2024
Cited by 3 | Viewed by 2138
Abstract
The Wunugetu deposit, a large-scale porphyry copper–molybdenum deposit, is located in the southern Erguna block. Its ore bodies are primarily found within monzogranites, granite porphyries, and biotite monzogranites. Additionally, the deposit contains late-stage intrusive dykes of rhyolitic porphyries. This study examined the deposit’s [...] Read more.
The Wunugetu deposit, a large-scale porphyry copper–molybdenum deposit, is located in the southern Erguna block. Its ore bodies are primarily found within monzogranites, granite porphyries, and biotite monzogranites. Additionally, the deposit contains late-stage intrusive dykes of rhyolitic porphyries. This study examined the deposit’s monzogranites and rhyolitic porphyries using lithogeochemistry, zircon U-Pb dating, and Hf isotopic analysis. The main findings include: (1) Zircon U-Pb dating showed that the monzogranites formed around 209.0 ± 1.0 Ma, whereas the rhyolitic porphyries in the northern portion formed around 170.49 ± 0.81 Ma, suggesting magmatic activity in the deposit spanned from the Late Triassic to the Middle Jurassic. (2) The monzogranites exhibited high silicon content (73.16–80.47 wt.%) and relatively low aluminum content (10.98–14.37 wt.%). They are enriched in alkalis (content: 3.42–10.10 wt.%) and deficient in magnesium and sodium, with aluminum saturation indices (A/CNK) ranging from 1.1 to 2.9. In addition, the monzogranites are enriched in large-ion lithophile elements (LILEs) such as Rb, K, and Ba and deficient in high-field-strength elements (HFSEs) like Nb, P, and Ti. (3) The monzogranites have low Zr + Nb + Ce + Y contents of (151.3–298.6 ppm) × 10−6 and 10,000 × Ga/Al ratios varying between 1.20 and 2.33, suggesting that they are characteristic of I-type granites. (4) Positive zircon εHf(t) values ranging from +0.3 to +7.6 in both rhyolitic porphyry and monzogranite samples, increasing with younger emplacement ages, imply that the deposit’s rocks originated from magmatic mixing between mantle-derived mafic magmas and remelts of the juvenile crust. Considering these results and the regional geological evolution, this study proposes that the Wunugetu deposit was formed in an active continental margin setting and was influenced by the Late Triassic–Middle Jurassic southeastward subduction of the Mongol-Okhotsk Ocean. Full article
Show Figures

Figure 1

13 pages, 3068 KB  
Article
Electron Spin–Lattice Relaxation of Substitutional Nitrogen in Silicon: The Role of Disorder and Motional Effects
by Matteo Belli and Marco Fanciulli
Nanomaterials 2024, 14(1), 21; https://doi.org/10.3390/nano14010021 - 20 Dec 2023
Cited by 4 | Viewed by 1482
Abstract
In a previous investigation, the authors proposed nitrogen as a possible candidate for exploiting the donor spin in silicon quantum devices. This system is characterized by a ground state deeper than the other group V impurities in silicon, offering less stringent requirements on [...] Read more.
In a previous investigation, the authors proposed nitrogen as a possible candidate for exploiting the donor spin in silicon quantum devices. This system is characterized by a ground state deeper than the other group V impurities in silicon, offering less stringent requirements on the device temperature necessary to access the unionized state. The nitrogen donor is slightly displaced from the substitutional site, and upon heating, the system undergoes a motional transition. In the present article, we show the results from our investigation on the spin–relaxation times in natSi and 28Si substrates and discuss the motional effects on relaxation. The stretched exponential relaxation observed is interpreted as a distribution of spin–lattice relaxation times, whose origin is also discussed. This information greatly contributes to the assessment of a nitrogen-doped silicon system as a potential candidate for quantum devices working at temperatures higher than those required for other group V donors in silicon. Full article
Show Figures

Graphical abstract

23 pages, 6392 KB  
Article
Geochemical Characteristics and Formation Mechanisms of the Geothermal Waters from the Reshui Area, Dulan of Qinghai, China
by Bing Wang, Xiwei Qin, Erfeng Ren, Ning Feng, Sha Yang, Wei Li, Guorong Li and Ziwen Jiang
Water 2023, 15(17), 3084; https://doi.org/10.3390/w15173084 - 28 Aug 2023
Cited by 3 | Viewed by 2971
Abstract
The Reshui area, located to the northeast of the Qinghai–Tibet Plateau, exhibits complex geological conditions, well-developed structures, and strong hydrothermal activities. The distribution of hot springs within this area is mainly controlled by faults. In this paper, five hot springs from the area [...] Read more.
The Reshui area, located to the northeast of the Qinghai–Tibet Plateau, exhibits complex geological conditions, well-developed structures, and strong hydrothermal activities. The distribution of hot springs within this area is mainly controlled by faults. In this paper, five hot springs from the area were taken as the research object. We comprehensively studied the geochemical characteristics and genetic mechanism of the geothermal water by conducting a field investigation, hydrogeochemistry and environmental isotopic analysis (87Sr/86Sr, δ2H, δ18O, 3H). The surface temperature of the geothermal water ranges from 84 to 91 °C. The geothermal water in the area exhibits a pH value ranging between 8.26 and 8.45, with a total dissolved solids’ (TDS) concentration falling between 2924 and 3140 mg/L, indicating a weakly alkaline saline nature. It falls into the hydrochemical type CI-Na and contains a relatively high content of trace components such as Li, Sr, B, Br, etc., which are of certain developmental value. Ion ratio analysis and strontium isotope characteristics show that the dissolution of evaporite minerals and carbonate minerals serves as a hot spring for the main source of solutes. Hydrogen and oxygen stable isotope characteristics findings indicate that the geothermal water is primarily recharged via atmospheric precipitation. Moreover, the tritium isotopic data suggest that the geothermal water is a mixture of both recent water and ancient water. Moreover, the recharge elevation is estimated to be between 6151 and 6255 m. and the recharge area is located in the Kunlun Mountains around the study area. The mixing ratio of cold water, calculated using the silicon enthalpy equation, is approximately 65% to 70%. Based on the heat storage temperature calculated using the silicon enthalpy equation and the corrected quartz geothermal temperature scale, we infer that the heat storage temperature of geothermal water in the area ranges from 234.4 to 247.8 °C, with a circulation depth between 7385 and 7816 m. The research results are highly valuable in improving the research level concerning the genesis of high-temperature geothermal water in Reshui areas and provide essential theoretical support for the rational development and protection of geothermal resources in the area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

11 pages, 928 KB  
Article
Silicon Differently Affects Apoplastic Binding of Excess Boron in Wheat and Sunflower Leaves
by Jasna Savic, Jelena Pavlovic, Milos Stanojevic, Predrag Bosnic, Ljiljana Kostic Kravljanac, Nina Nikolic and Miroslav Nikolic
Plants 2023, 12(8), 1660; https://doi.org/10.3390/plants12081660 - 15 Apr 2023
Cited by 8 | Viewed by 2145
Abstract
Monocots and dicots differ in their boron (B) requirement, but also in their capacity to accumulate silicon (Si). Although an ameliorative effect of Si on B toxicity has been reported in various crops, differences among monocots and dicots are not clear, in particular [...] Read more.
Monocots and dicots differ in their boron (B) requirement, but also in their capacity to accumulate silicon (Si). Although an ameliorative effect of Si on B toxicity has been reported in various crops, differences among monocots and dicots are not clear, in particular in light of their ability to retain B in the leaf apoplast. In hydroponic experiments under controlled conditions, we studied the role of Si in the compartmentation of B within the leaves of wheat (Triticum vulgare L.) as a model of a high-Si monocot and sunflower (Helianthus annuus L.) as a model of a low-Si dicot, with the focus on the leaf apoplast. The stable isotopes 10B and 11B were used to investigate the dynamics of cell wall B binding capacity. In both crops, the application of Si did not affect B concentration in the root, but significantly decreased the B concentration in the leaves. However, the application of Si differently influenced the binding capacity of the leaf apoplast for excess B in wheat and sunflower. In wheat, whose capacity to retain B in the leaf cell walls is lower than in sunflower, the continuous supply of Si is crucial for an enhancement of high B tolerance in the shoot. On the other hand, the supply of Si did not contribute significantly in the extension of the B binding sites in sunflower leaves. Full article
Show Figures

Figure 1

26 pages, 12238 KB  
Article
Pseudo-Karst Silicification Related to Late Ni Reworking in New Caledonia
by Michel Cathelineau, Marie-Christine Boiron, Jean-Louis Grimaud, Sylvain Favier, Yoram Teitler and Fabrice Golfier
Minerals 2023, 13(4), 518; https://doi.org/10.3390/min13040518 - 6 Apr 2023
Cited by 4 | Viewed by 2342
Abstract
Silicification in New Caledonian pseudo-karsts developed on peridotite was assessed using δ18O and δ30Si pairs on quartz cements. The objective was to document the chronology of pseudo-karst development and cementation relative to geomorphic evolution. The latter began at the [...] Read more.
Silicification in New Caledonian pseudo-karsts developed on peridotite was assessed using δ18O and δ30Si pairs on quartz cements. The objective was to document the chronology of pseudo-karst development and cementation relative to geomorphic evolution. The latter began at the end of the Eocene with the supergene alteration of peridotites and the subsequent formation of extended lateritic weathering profiles. Neogene uplift favoured the dismantling of these early lateritic profiles and valley deepening. The river incision resulted in (i) the stepping of a series of lateritic paleo-landforms and (ii) the development of a pseudo-karst system with subvertical dissolution pipes preferentially along pre-existing serpentine faults. The local collapse of the pipes formed breccias, which were then cemented by white quartz and Ni-rich talc-like (pimelite). The δ30Si of quartz, ranging between −5‰ and −7‰, are typical of silcretes and close to the minimum values recorded worldwide. The estimated δ18O of −6 to −12‰ for the fluids are lower than those of tropical rainfall typical of present-day and Eocene–Oligocene climates. Evaporation during drier climatic episodes is the main driving force for quartz and pimelite precipitation. The silicification presents similarities with silcretes from Australia, which are considered predominantly middle Miocene in age. Full article
(This article belongs to the Special Issue Geochemistry and Mineralogy of Ni-Co Laterite Deposits)
Show Figures

Figure 1

Back to TopTop