Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = silicon carbide foam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6308 KiB  
Article
Effect of Structurally Modified Toluene Diisocyanate-Based Polyurethane Pads on Chemical Mechanical Polishing of 4H Silicon Carbide Substrate
by Yiming Meng, Shanduan Zhang and Zefang Zhang
Polymers 2025, 17(5), 613; https://doi.org/10.3390/polym17050613 - 25 Feb 2025
Cited by 1 | Viewed by 1080
Abstract
This study investigates the impact of polycarbonate diol (PCDL)-modified toluene diisocyanate (TDI)-based polyester polyurethane polishing pads on the chemical mechanical polishing of 4H silicon carbide (4H-SiC) substrates. Employing a unique metho, PCDL alters the ratio of polyurethane soft and hard segments, facilitating the [...] Read more.
This study investigates the impact of polycarbonate diol (PCDL)-modified toluene diisocyanate (TDI)-based polyester polyurethane polishing pads on the chemical mechanical polishing of 4H silicon carbide (4H-SiC) substrates. Employing a unique metho, PCDL alters the ratio of polyurethane soft and hard segments, facilitating the one-step synthesis of a polishing pad via chemical foaming. The extent of the reaction of isocyanate groups was characterized by Fourier transform infrared spectroscopy, while the changes in the glass transition temperature of the material before and after modification were evaluated using differential scanning calorimetry. The mechanical properties and surface morphology of the modified pad have been systematically characterized. The results showed that compared with the polyurethane polishing pad without PCDL, tensile strength was augmented by a factor of 2.1, the elastic modulus surged by a factor of 4.2, the elongation at break improved by a factor 1.6, and the wear index decreased by a factor of 0.5 by 40 wt.% PCDL loading. Furthermore, the modified pad demonstrated a 14.5% increase in material removal rate and a reduction in surface roughness of 4H-SiC from 0.124 nm to 0.067 nm. Additionally, the compact surface pore structure and enhanced chemical stability in the strong oxidizing slurry of the modified pad enabled superior polishing performance, achieving an ultrasmooth 4H-SiC surface. The study highlights the potential of tailored polyurethane formulations in enhancing polishing efficiency and surface finish in semiconductor manufacturing processes. Full article
Show Figures

Figure 1

16 pages, 4320 KiB  
Article
Low-Cost Foamed Ceramics with Enhanced Mechanical Performance and Uniform Pore Size Structure
by Junchi Weng, Xiulin Shen, Yixian Yang, Xuejia Zhang, Mengke Fan, Ge Gao, Zeming Guo, Zhenfei Lv and Xiujuan Feng
Crystals 2025, 15(2), 180; https://doi.org/10.3390/cryst15020180 - 13 Feb 2025
Viewed by 713
Abstract
Due to the lack of effective utilization, fly ash and red mud accumulate in large quantities and cause serious harm to the environment. In this experiment, a low-cost preparation of foamed ceramics was realized by applying the foaming agent addition method using fly [...] Read more.
Due to the lack of effective utilization, fly ash and red mud accumulate in large quantities and cause serious harm to the environment. In this experiment, a low-cost preparation of foamed ceramics was realized by applying the foaming agent addition method using fly ash and red mud. The results indicated that temperature and foaming agent content significantly affected the macrostructure, microstructure, crystalline phases, and properties of the foamed ceramics. Specifically, a formulation comprising 45 wt.% fly ash, 45 wt.% red mud, 10 wt.% clay, and 1 wt.% SiC (addition), sintered at 1210 °C, yielded a compressive strength of 8.2 MPa, a bulk density of 1.17 g/cm3, a water absorption rate of 32.05%, and an apparent porosity of 37.59%. The as-prepared materials demonstrate potential as cost-effective building materials, putting forward an effective approach for the high-value utilization of fly ash and red mud. Full article
(This article belongs to the Special Issue Structure and Properties of Ceramic Materials)
Show Figures

Figure 1

18 pages, 4220 KiB  
Article
Catalytic OBSiC Open Cell Foams for Methane-Rich Gas Production Through Hydrogasification of Plastic Waste
by Emilia Saraceno, Eugenio Meloni, Alberto Giaconia and Vincenzo Palma
Catalysts 2025, 15(2), 152; https://doi.org/10.3390/catal15020152 - 6 Feb 2025
Cited by 1 | Viewed by 917
Abstract
The shift toward sustainable energy sources is essential to curb greenhouse gas emissions and satisfy energy demands. Among renewable options, carbon-based materials—such as agricultural residues and municipal solid waste—provide a dual advantage by generating energy and fuels while also reducing landfill waste. A [...] Read more.
The shift toward sustainable energy sources is essential to curb greenhouse gas emissions and satisfy energy demands. Among renewable options, carbon-based materials—such as agricultural residues and municipal solid waste—provide a dual advantage by generating energy and fuels while also reducing landfill waste. A notable innovation is transforming plastic waste into methane-rich streams via catalytic hydrogasification, a process in which carbon-based feedstocks interact with hydrogen using a selective catalyst. In this study, a structured catalyst was developed, characterized, and tested for converting plastic waste samples. The thermal degradation properties of plastic waste were first studied using thermogravimetric analysis. The catalyst was prepared using an Oxygen Bonded Silicon Carbide (OBSiC) open-cell foam as the carrier, coated with γ-Al2O3-based washcoat, CeO2, and Ni layers. It was characterized in terms of specific surface area, coating adhesion, pore distribution, acidity, and the strength of its active sites. Experimental tests revealed that a hydrogen-enriched atmosphere significantly enhances CH4 formation. Specifically, during catalytic hydrogasification, methane selectivity reached approximately 59%, compared to 6.7%, 13.7%, and 7.8% observed during pyrolysis, catalyzed pyrolysis, and non-catalyzed hydrogasification tests, respectively. This study presents a novel and effective approach for converting plastic waste using a structured catalyst, a method rarely explored in literature. Full article
Show Figures

Figure 1

25 pages, 14186 KiB  
Article
Steel Ball Impact on SiC/AlSi12 Interpenetrated Composite by Peridynamics
by Eligiusz Postek, Tomasz Sadowski and Jajnabalkya Guhathakurta
Materials 2025, 18(2), 290; https://doi.org/10.3390/ma18020290 - 10 Jan 2025
Cited by 1 | Viewed by 920
Abstract
Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to [...] Read more.
Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to describe the behavior of the material, considering its internal structure. The composite’s structure is obtained by using X-ray computing tomography. The thorough computer tomography analysis allows for the high-precision identification of the shape and distribution of the pores in the matrix. The computational model prepared in the framework of the peridynamics method takes into account the pores and their shape. The pores in the structure appeared in the fabrication process. The impact of a steel ball is studied employing the peridynamics method. The sample without any porosity and a porous one were considered during the analyses. It has been found that the porosity of the matrix influences the plastic strain development, but the damage parameter in the skeleton is not affected significantly. The damage advancement in the skeleton during the process is practically identical in both cases. The equivalent plastic strain field is much smoother in a non-porous matrix than in a porous one. The porous matrix has high equivalent plastic strain concentrations, much higher than the non-porous matrix. The shape of the sample is affected by the porosity of the matrix. The sample with a porous matrix tends to fragment, and it shows a tendency towards spallation when in close contact to the surface with the base. Full article
Show Figures

Figure 1

20 pages, 8023 KiB  
Article
Reaction-Engineering Approach for Stable Rotating Glow-to-Arc Plasma—Key Principles of Effective Gas-Conversion Processes
by Samuel Jaro Kaufmann, Haripriya Chinnaraj, Johanna Buschmann, Paul Rößner and Kai Peter Birke
Catalysts 2024, 14(12), 864; https://doi.org/10.3390/catal14120864 - 26 Nov 2024
Viewed by 845
Abstract
This work presents advancements in a rotating glow-to-arc plasma reactor, designed for stable gas conversion of robust molecules like CO2, N2, and CH4. Plasma-based systems play a critical role in Power-to-X research, offering electrified, sustainable pathways for [...] Read more.
This work presents advancements in a rotating glow-to-arc plasma reactor, designed for stable gas conversion of robust molecules like CO2, N2, and CH4. Plasma-based systems play a critical role in Power-to-X research, offering electrified, sustainable pathways for industrial gas conversion. Here, we scaled the reactor’s power from 200 W to 1.2 kW in a CO2 plasma, which introduced instability due to uplift forces and arc behavior. These were mitigated by integrating silicon carbide (SiC) ceramic foam as a mechanical restriction, significantly enhancing stability by reducing arc movement, confining convection, and balancing volumetric flow within the arc. Using high-speed camera analysis and in situ electronic frequency measurements, we identified dominant frequencies tied to operational parameters, supporting potential in operando monitoring and control. Arc-rotation frequencies from 5 to 50 Hz and higher frequencies (500 to 2700 Hz) related to arc chattering reveal the system’s dynamic response to power and flow changes. Furthermore, refining the specific energy input (SEI) to account for plasma residence time allowed for a more precise calculation of effective SEI, optimizing energy delivery to target molecules. Our findings underscore the reactor’s promise for scalable, efficient gas conversion in sustainable energy applications. Full article
(This article belongs to the Special Issue Plasma Catalysis for Environment and Energy Applications)
Show Figures

Figure 1

12 pages, 2675 KiB  
Article
Thermal Shock Resistance of Commercial Oxide-Bonded Silicon Carbide Reticulated Foams under Concentrated Solar Radiation at PSA: A Feasibility Study
by Fernando de Almeida Costa Oliveira, José Galindo, José Rodríguez, Inmaculada Cañadas and Jorge Cruz Fernandes
Inorganics 2024, 12(9), 246; https://doi.org/10.3390/inorganics12090246 - 11 Sep 2024
Viewed by 1440
Abstract
Volumetric ceramic receivers can be regarded as a promising technology to heat air above 1000 °C for solar thermal electricity production. In this study, the thermal shock behavior of commercial 10 ppi (A) and 20 ppi (B) oxide-bonded silicon carbide (ob-SiC) reticulated porous [...] Read more.
Volumetric ceramic receivers can be regarded as a promising technology to heat air above 1000 °C for solar thermal electricity production. In this study, the thermal shock behavior of commercial 10 ppi (A) and 20 ppi (B) oxide-bonded silicon carbide (ob-SiC) reticulated porous ceramic (RPC) foams was evaluated using the SF60 solar furnace at Plataforma Solar de Almería. The foams were subjected to well-controlled temperature cycles ranging from 800 to 1000, 1200, 1300 or 1400 °C, for 25, 100, and 150 cycles. The extent of the damage after thermal shock was determined by crushing tests. The damage was found to be critically dependent on both the bulk density and cell size. Decreasing both the bulk density and cell size resulted in better thermal shock resistance. The B foam exhibited approximately half the stress degradation compared to the A foam when exposed to a temperature difference of 600 K (in the range of 800 to 1400 °C) and subjected to 150 cycles. Full article
(This article belongs to the Special Issue Featured Papers in Inorganic Materials 2024)
Show Figures

Graphical abstract

12 pages, 7443 KiB  
Article
The Effect of Flux on a Waste-Derived Foamed Ceramic: Analysis of Microstructure and Properties
by Zhiwu Zuo, Minghao Mu, Xue Liu and Congcong Jiang
Crystals 2024, 14(8), 682; https://doi.org/10.3390/cryst14080682 - 26 Jul 2024
Cited by 4 | Viewed by 1022
Abstract
Foamed ceramics with high closed porosity were prepared using granite scrap as the raw material and silicon carbide as a foaming agent, and the effects of Na2O, K2O, and MgO on the pore structure and properties of the foamed [...] Read more.
Foamed ceramics with high closed porosity were prepared using granite scrap as the raw material and silicon carbide as a foaming agent, and the effects of Na2O, K2O, and MgO on the pore structure and properties of the foamed ceramics were investigated. The results show that both Na2O and K2O could reduce the viscosity of the melt and promote the formation of the liquid phase, and the increase in content could enhance the foaming ability of the blank. When the dosage of Na2O was 4–6 wt% and the dosage of K2O was 6–8 wt%, the homogeneity of the pore structure of the foamed ceramics could be effectively improved, and the samples exhibited an optimal performance, including a bulk density of 510.36–593.33 kg/m3, a closed porosity of 68.24–78.04%, a compressive strength of 1.33–2.66 MPa, and a water absorption capacity of 0.57–1.31%. A further increase in the Na2O and K2O dosages destroyed the uniformity of the pore structure, resulting in a large number of irregular macropores. MgO had a slight effect on regulating the pore structure of the foamed ceramics, and the increase in dosage promoted the precipitation of forsterite crystals, creating conditions suitable for the preparation of foamed ceramics with small pores. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

12 pages, 2192 KiB  
Article
Mechanism Study on the Effect of Surface Electrical Property on Microbial Membrane Formation Efficiency of TiO2-SiC Composite Filler in Recirculating Aquaculture System
by Jiaxin Li, Ze Hong, Jingying Ouyang, Han Zheng and Ying Liu
Materials 2024, 17(14), 3501; https://doi.org/10.3390/ma17143501 - 15 Jul 2024
Viewed by 1000
Abstract
Recirculating aquaculture systems (RASs) offer significant advantages in aquaculture by markedly decreasing water usage and increasing culture density. A vital component within a RAS is the filler material, which serves as a surface for microbial colonization. Effective microbial treatment is crucial for the [...] Read more.
Recirculating aquaculture systems (RASs) offer significant advantages in aquaculture by markedly decreasing water usage and increasing culture density. A vital component within a RAS is the filler material, which serves as a surface for microbial colonization. Effective microbial treatment is crucial for the efficient operation of a RAS as it assists in purifying the wastewater generated within the system. Nevertheless, traditional fillers often show low efficiency in biofilm formation. The commercial silicon carbide used in this study is a foam ceramic filter with a density of about 0.4–0.55 g/cm3, a number of holes of about 10, and a through porosity of 80.9%, with a diameter of about 5 cm. This research investigates the utilization of a titanium dioxide–silicon carbide (TiO2-SiC) composite filler to improve the purification efficiency of ammonia nitrogen and chemical oxygen demand (COD) in aquaculture wastewater. The study involved the application of titanium dioxide films onto the surface of silicon carbide to produce the composite filler. This method takes advantage of the dipole interaction between titanium dioxide and microorganisms, which enhances biofilm culturing efficiency on the silicon carbide surface. The performance of three different fillers was assessed for their ability to purify aquaculture wastewater. Results showed that the TiO2-SiC composite filler was 1.67 times more effective in removing COD and 1.07 times more effective in removing ammonia nitrogen compared to using silicon carbide alone. These results demonstrate that the incorporation of a titanium dioxide coating substantially boosts the microbial colonization efficiency of silicon carbide, thereby enhancing the overall wastewater purification efficiency in RAS. Full article
Show Figures

Figure 1

18 pages, 6482 KiB  
Article
Recycling of Silicomanganese Slag and Fly Ash for Preparation of Environment-Friendly Foamed Ceramics
by Guihang Yu, Wei Gao, Yanbin Yao, Tingting Zhang, Ying Fu and Xiangqing Kong
Materials 2023, 16(20), 6724; https://doi.org/10.3390/ma16206724 - 17 Oct 2023
Cited by 12 | Viewed by 1778
Abstract
In order to reduce the manufacturing cost of foamed ceramics and expand the application scope of industrial solid waste, in this study, a new type of environment-friendly foamed ceramics was prepared using direct high-temperature foaming with waste silicomanganese slag (SMS) and fly ash [...] Read more.
In order to reduce the manufacturing cost of foamed ceramics and expand the application scope of industrial solid waste, in this study, a new type of environment-friendly foamed ceramics was prepared using direct high-temperature foaming with waste silicomanganese slag (SMS) and fly ash (FA) as raw materials and silicon carbide (SiC) as a foaming agent. The influence of SMS content, SiC content, and sintering temperature on the characteristics and microstructure of the specimen were explored. More concretely, the compressive strength, pore morphology, bulk density, and crystalline composition of the foamed ceramics were discussed. The foaming mechanism was also further analyzed. The results showed that including 20% SMS significantly reduced the melt’s viscosity and stimulated bubble expansion. This, in turn, facilitated the creation of a porous structure. Moreover, it was noted that samples containing 20% SMS exhibited an anorthite phase when sintered at 1110 °C, resulting in enhanced compressive strength. The bulk density and compressive strength of the foamed ceramics decreased with an increase in the sintering temperature and SiC content. This trend was primarily attributed to the higher total porosity and the insufficient support of the pore wall to the matrix. The best all-around performance was achieved with 20 wt% SMS, 80 wt% FA as raw material, SiC addition of 1.0 wt%, and a sintering temperature of 1100 °C. Under these conditions, the compressive strength, bulk density, and total porosity of the foamed ceramics were 8.09 MPa, 0.57 g/cm3, and 71.04%, respectively. Taken together, the outstanding porous structure and mechanical properties of this foamed ceramic make it suitable for use as insulation or for building partition materials. Full article
Show Figures

Figure 1

15 pages, 7827 KiB  
Article
Experimental Characterization of a Novel Foam Burner Design for the Low-Excess-Enthalpy Combustion of Very Lean Syngas Mixtures
by Kyriakos Fotiadis, Akrivi Asimakopoulou, Penelope Baltzopoulou, Georgia Kastrinaki, Dimitrios Koutsonikolas, George Karagiannakis, George Skevis, Jana Richter and Fabian Mauss
Energies 2023, 16(19), 7014; https://doi.org/10.3390/en16197014 - 9 Oct 2023
Viewed by 1602
Abstract
In the present work, a novel foam burner design is proposed and experimentally evaluated for operation with highly diluted syngas mixtures. The lab-scale burner consists of a purpose-built, square-shaped, high-temperature-grade stainless steel tubular reactor filled with square-sectioned siliconized silico carbide (SiSiC) foams. The [...] Read more.
In the present work, a novel foam burner design is proposed and experimentally evaluated for operation with highly diluted syngas mixtures. The lab-scale burner consists of a purpose-built, square-shaped, high-temperature-grade stainless steel tubular reactor filled with square-sectioned siliconized silico carbide (SiSiC) foams. The assembly was installed in an electrical furnace. Spatially resolved temperature measurements were obtained along the reactor axis, while simultaneous measurements of CO, CO2, H2, O2, and N2 were taken at the burner exit and the water levels were recorded upstream and downstream of the reactor. The results clearly show that flames can be stabilized along the reactor for a range of foam characteristics and operating conditions. Hydrogen conversion efficiencies in excess of 98%, and overall thermal efficiencies close to 95% were achieved for the selected operating conditions. Overall, the denser 10 ppi foam demonstrated superior combustion characteristics in terms of stability, lower enthalpy rises, and a wider operating range at the expense of a very modest pressure drop penalty. Finally, scanning electron microscopy, coupled with energy dispersion spectroscopy (SEM/EDS) and Raman spectroscopy analyses, was used to determine the morphological and compositional characteristics of the pristine and aged foams. After more than 100 h of operation, no significant performance degradation was observed, even though the burner design was subjected to considerable thermal stress. Full article
(This article belongs to the Special Issue Advances in Fuels and Combustion)
Show Figures

Figure 1

22 pages, 2151 KiB  
Article
Numerical Study of a High-Temperature Latent Heat Thermal Energy Storage Device with AlSi12 Alloy
by Chaomurilige, Geng Qiao, Peng Zhao, Yang Li and Yongliang Li
Energies 2023, 16(15), 5729; https://doi.org/10.3390/en16155729 - 31 Jul 2023
Cited by 1 | Viewed by 1636
Abstract
This paper explores the potential of thermal storage as an energy storage technology with cost advantages. The study uses numerical simulations to investigate the impact of adding porous material to the HTF side during solidification to improve the heat transfer effect of TES [...] Read more.
This paper explores the potential of thermal storage as an energy storage technology with cost advantages. The study uses numerical simulations to investigate the impact of adding porous material to the HTF side during solidification to improve the heat transfer effect of TES using AlSi12 alloy as the phase-change material. The research also examines the effects of adding porous dielectric materials and increasing air velocity on the discharge temperature, discharge power, and discharge time of high-temperature phase-change energy storage systems. The study found that the temperature difference of the PCM (increased), solidification time (reduced more than 85%), the outlet temperature of the air, and heat discharge power of the LHS did not vary significantly across different porous materials (copper foam, nickel foam, and silicon carbide foam) added to the HTF tube. These findings offer important information for the design of high-temperature phase-change energy storage devices and can guide future developments in this field. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage and Applications)
Show Figures

Figure 1

21 pages, 25115 KiB  
Article
Ceramic Aggregate Material Formulated with MSWI Fly Ash and Fuel Ash for Use as Filter Media
by Ning Lu, Hougang Chen, Jiao Chen and Yi-Fang Cao
Minerals 2023, 13(7), 845; https://doi.org/10.3390/min13070845 - 22 Jun 2023
Cited by 6 | Viewed by 2121
Abstract
This study aimed to develop a novel filtering medium ceramic aggregate prepared using municipal solid waste incineration (MSWI) fly ash and the fuel ash from coal power plants, together with small amounts of silicon carbide foaming agent and magnesia flux as additives. For [...] Read more.
This study aimed to develop a novel filtering medium ceramic aggregate prepared using municipal solid waste incineration (MSWI) fly ash and the fuel ash from coal power plants, together with small amounts of silicon carbide foaming agent and magnesia flux as additives. For the manufacturing process, the dosage of MSWI fly ash and the sintering temperature were optimized to maximize the performance of the resulting materials. Leaching test results indicated that the heavy metal concentrations in the ceramic aggregate were significantly below the limits proposed by GB5085.3-2007, demonstrating its safety for wastewater treatment. The ammonia nitrogen removal efficiency was assessed, and the removal rate of the developed ceramic aggregate was found to be 16.4% higher than that of zeolite, making it comparable to commercial ceramic aggregate. Scanning electron microscopy and X-ray diffractometer analyses were conducted on the ceramic aggregates. The ammonia-nitrogen-removing mechanism, attributed to adsorption and ion exchange, is discussed based on the microstructural analysis results. Full article
(This article belongs to the Special Issue Alkali-Activated Binders)
Show Figures

Figure 1

14 pages, 3246 KiB  
Article
SiC Foams for the Photocatalytic Degradation of Methylene Blue under Visible Light Irradiation
by Karla Begonia Cervantes-Diaz, Martin Drobek, Anne Julbe and Julien Cambedouzou
Materials 2023, 16(4), 1328; https://doi.org/10.3390/ma16041328 - 4 Feb 2023
Cited by 9 | Viewed by 2472
Abstract
SiC foams were synthesized by impregnating preceramic polymer into polyurethane foam templates, resulting in a photo-catalytically active material for the degradation of methylene blue. The crystalline structure, electronic properties, and photocatalytic performance of the SiC foams were characterized using a series of experimental [...] Read more.
SiC foams were synthesized by impregnating preceramic polymer into polyurethane foam templates, resulting in a photo-catalytically active material for the degradation of methylene blue. The crystalline structure, electronic properties, and photocatalytic performance of the SiC foams were characterized using a series of experimental techniques, including X-ray diffraction, electron microscopy, energy dispersive X-ray spectroscopy, N2 physisorption measurements, UV-visible spectroscopy, and methylene blue photodegradation tests. The original polyurethane template’s microporous structure was maintained during the formation of the SiC foam, while additional mesopores were introduced by the porogen moieties added to the preceramic polymers. The prepared SiC-based photocatalyst showed attractive photocatalytic activity under visible light irradiation. This structured and reactive material offers good potential for application as a catalytic contactor or membrane reactor for the semi-continuous treatment of contaminated waste waters in ambient conditions. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

17 pages, 13926 KiB  
Article
Dynamic Compression of a SiC Foam
by Eligiusz Postek and Tomasz Sadowski
Materials 2022, 15(23), 8363; https://doi.org/10.3390/ma15238363 - 24 Nov 2022
Cited by 1 | Viewed by 1819
Abstract
Silicon carbide foam is a material that can be used as reinforcement of interpenetrated composites. This paper presents an analysis of such a foam subjected to low and fast compression. The analysis is performed using the peridynamics (PD) method. This approach allows for [...] Read more.
Silicon carbide foam is a material that can be used as reinforcement of interpenetrated composites. This paper presents an analysis of such a foam subjected to low and fast compression. The analysis is performed using the peridynamics (PD) method. This approach allows for an evaluation of failure modes and such effects of microcracks nucleation, their growth, and, finally, fragmentation. Furthermore, the material appears to behave qualitatively and quantitatively differently while subjected to low- and high-speed steel piston movement. Under slow compression case, damage appears in the entire specimen, but the shape of the structure is not changing significantly, whereas during the fast compression the sample is dynamically fragmented. Full article
(This article belongs to the Special Issue Dynamic Behavior of Ceramic Composites and Composite Structures)
Show Figures

Figure 1

8 pages, 2958 KiB  
Article
Manufacturing of Complex Silicon–Carbon Structures: Exploring SixCy Materials
by Skyler Oglesby, Sergei A. Ivanov, Alejandra Londonõ-Calderon, Douglas Pete, Michael Thompson Pettes, Andrew Crandall Jones and Sakineh Chabi
Materials 2022, 15(10), 3475; https://doi.org/10.3390/ma15103475 - 12 May 2022
Cited by 2 | Viewed by 4497
Abstract
This paper reports on the manufacturing of complex three-dimensional Si/C structures via a chemical vapor deposition method. The structure and properties of the grown materials were characterized using various techniques including scanning electron microscopy, aberration-corrected transmission electron microscopy, confocal Raman spectroscopy, and X-ray [...] Read more.
This paper reports on the manufacturing of complex three-dimensional Si/C structures via a chemical vapor deposition method. The structure and properties of the grown materials were characterized using various techniques including scanning electron microscopy, aberration-corrected transmission electron microscopy, confocal Raman spectroscopy, and X-ray photoelectron spectroscopy. The spectroscopy results revealed that the grown materials were composed of micro/nanostructures with various compositions and dimensions. These included two-dimensional silicon carbide (SiC), cubic silicon, and various SiC polytypes. The coexistence of these phases at the nano-level and their interfaces can benefit several Si/C-based applications ranging from ceramics and structural applications to power electronics, aerospace, and high-temperature applications. With an average density of 7 mg/cm3, the grown materials can be considered ultralightweight, as they are three orders of magnitude lighter than bulk Si/C materials. This study aims to impact how ceramic materials are manufactured, which may lead to the design of new carbide materials or Si/C-based lightweight structures with additional functionalities and desired properties. Full article
(This article belongs to the Special Issue Silicon Carbide: From Fundamentals to Applications (Volume II))
Show Figures

Figure 1

Back to TopTop