Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = sheet–tube connections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4749 KiB  
Article
Crack Width Recognition of Tunnel Tube Sheet Based on YOLOv8 Algorithm and 3D Imaging
by Xunqian Xu, Qi Li, Shue Li, Fengyi Kang, Guozhi Wan, Tao Wu and Siwen Wang
Buildings 2024, 14(2), 531; https://doi.org/10.3390/buildings14020531 - 16 Feb 2024
Cited by 10 | Viewed by 2015
Abstract
Based on the tunnel crack width identification, there are operating time constraints, limited operating space, high equipment testing costs, and other issues. In this paper, a large subway tunnel is a research object, and the tunnel rail inspection car is an operating platform [...] Read more.
Based on the tunnel crack width identification, there are operating time constraints, limited operating space, high equipment testing costs, and other issues. In this paper, a large subway tunnel is a research object, and the tunnel rail inspection car is an operating platform equipped with industrial cameras in order to meet the requirements of the tunnel tube sheet crack width recognition of more than 0.2 mm, with the measuring instrument to verify that the tunnel rail inspection car in the state of uniform motion camera imaging quality has the reliability through the addition of laser rangefinders, the accurate measurement of the object distance and the calculation of the imaging plane and the angle of the plane to be measured, to amend the three-dimensional cracks. The pixel resolution of the image is corrected, the images imaged by the industrial camera are preprocessed, the YOLOv8 algorithm is used for the intelligent extraction of crack morphology, and finally, the actual width is calculated from the spacing between two points of the crack. The crack detection width obtained by image processing using the YOLOv8 algorithm is basically the same as the value of crack width obtained by manual detection, and the error rate of crack width detection ranges from 0% to 11%, with the average error rate remaining below 4%. Compared with the crack detection error rate of the Support Vector Machine (SVM), the crack extraction model is reduced by 1%, so using the tunnel inspection vehicle as a platform equipped with an industrial camera, YOLOv8 is used to realize the recognition of the shape and width of the cracks on the surface of the tunnel tube sheet to meet the requirements of a higher degree of accuracy. The number of pixels and the detection error rate are inversely proportional to each other. The angle between the imaging plane and the plane under test is directly proportional to the detection error rate. The angle between the vertical axis where the lens midpoint is located and the line connecting the shooting target and the lens center point is αi and the angle θi between the measured plane and the imaging plane is reciprocal, i.e., αi + θi = 90°. Therefore, using the inspection vehicle as a mobile platform equipped with an industrial camera and based on the YOLOv8 algorithm, the crack recognition of the tunnel tube sheet has the feasibility and the prospect of wide application, which provides a reference method for the detection of cracks in the tunnel tube sheet. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

22 pages, 11464 KiB  
Article
Research on Fractal Characteristics and Influencing Factors of Pore-Throats in Tight Sandstone Reservoirs: A Case Study of Chang 6 of the Upper Triassic Yanchang Formation in Huaqing Area, Ordos Basin, China
by Fanchi Nan, Liangbiao Lin, Yating Lai, Chao Wang, Yu Yu and Zhaobing Chen
Minerals 2023, 13(9), 1137; https://doi.org/10.3390/min13091137 - 28 Aug 2023
Cited by 2 | Viewed by 1579
Abstract
In recent years, tight sandstone oil and gas have been an important area for unconventional oil and gas exploration and development in China. It is of great significance to clarify the pore-throat structure characteristics of tight sandstone reservoirs to guide production practices. This [...] Read more.
In recent years, tight sandstone oil and gas have been an important area for unconventional oil and gas exploration and development in China. It is of great significance to clarify the pore-throat structure characteristics of tight sandstone reservoirs to guide production practices. This study takes the tight sandstone of the sixth member of the Yanchang Formation in the Huaqing area, Ordos Basin, as an example, based on experimental methods such as high-pressure mercury intrusion, cast thin sections and scanning electron microscopy. At the same time, the pore-throat structure of tight sandstone reservoirs is divided into three types using the tube-bundle and spherical fractal models. The corresponding pore and throat radius distribution, pore-throat combination mode and influencing factors of various pore-throats are studied. The results show that the fractal dimension of type I pore-throats is the smallest, and the distribution of their pore-throat radii is the most uniform. They are dominated by intercrystalline pores and dissolution pores with tube-bundle throats and small pores with small throats. Type II pore-throats have the largest fractal dimension and the worst pore-throat uniformity. They are dominated by residual primary intergranular pores with necked throats and large pores with small throats. The type III pore-throat fractal dimension is in the middle, mainly composed of residual dissolved intergranular pores with pore-reduced throats, sheet-like and curved sheet-like throats, and large pores with large throats. The influence of different pore-throat combinations on the reservoir is reflected in the different characteristics of mercury injection parameters. The main influencing factors for the differences in the fractal dimensions of different pore-throats are diagenesis, rock composition and pore-throat combination type. Diagenesis and rock composition, in turn, affect the type and development degree of pore-throats, as well as the combination of pore-throats. The purpose of this study was to clarify the internal connection modes of different homogeneous pore-throats and their influencing factors, enrich the theoretical basis for the study of tight sandstone reservoirs and provide theoretical guidance for their exploration and development. Full article
Show Figures

Figure 1

12 pages, 4350 KiB  
Article
Tube Joining by a Sheet Flange Connection
by Rafael M. Afonso and Luís M. Alves
J. Manuf. Mater. Process. 2023, 7(1), 12; https://doi.org/10.3390/jmmp7010012 - 29 Dec 2022
Cited by 1 | Viewed by 2794
Abstract
Joining of tubes to tubes by means of plastic deformation at ambient temperature allows one to solve the main limitations produced by the necessity of joining thin-walled tubes of low-to-medium diameter size made from materials that are not suitable to be welded and/or [...] Read more.
Joining of tubes to tubes by means of plastic deformation at ambient temperature allows one to solve the main limitations produced by the necessity of joining thin-walled tubes of low-to-medium diameter size made from materials that are not suitable to be welded and/or have reduced contact interfaces. The new joining solution allows one to obtain permanent mechanical joints of tubes or pipes by means of an accessory lightweight sheet metal flange subjected to annular indentation and subsequent injection of its material towards the tube walls to produce a mechanical interlock between the different elements. The sheet-flange connection can then be utilized to affix the joined tube assembly to walls or other different structures and equipment, by means of fasteners or other joining accessories attached to the sheet flange. Similar or dissimilar material combinations can be easily and safely produced while guaranteeing levels of leak-tightness within the maximum internal operating pressure of the individual tubes. A combined numerical–experimental approach is employed to identify the operative parameters as well as to explain the deformation conditions. Pull-out loads and internal fluid pressure are applied to the manufactured joint to evaluate its behavior under typical operating conditions that it may be subjected to during its service life depending on the application. Full article
(This article belongs to the Special Issue Joining of Unweldable Materials: Concepts, Techniques and Processes)
Show Figures

Figure 1

15 pages, 16124 KiB  
Article
Shear Strength of Adhesive Bonding of Plastics Intended for High Temperature Plastic Radiators
by Ilya Astrouski, Tereza Kudelova, Josef Kalivoda and Miroslav Raudensky
Processes 2022, 10(5), 806; https://doi.org/10.3390/pr10050806 - 20 Apr 2022
Cited by 10 | Viewed by 6626
Abstract
The use of adhesive joints has increased in recent decades due to their competitive features in comparison with other joining methods. They can be used in specific applications where there is no possibility to use alternative connection techniques. Adhesive bonding was used to [...] Read more.
The use of adhesive joints has increased in recent decades due to their competitive features in comparison with other joining methods. They can be used in specific applications where there is no possibility to use alternative connection techniques. Adhesive bonding was used to assemble the prototype of a high-temperature car radiator (operated up to 125 °C) with a total of 12,240 plastic tubes. This work aims to estimate the shear strength of different adhesives intended for bonding the plastics used to assemble the above-mentioned high-temperature radiator. Fourteen commercial adhesives were tested with one thermoset plastic (G11 glass fabric epoxy sheets) and two glass-reinforced thermoplastics (polyamide PA66-GF30 and polyphenylene sulfide PPS-GF40). Tests were conducted according EN 1465 to determine tensile lap-shear strength of bonding. Testing showed that only 4 of the 14 adhesives tested exhibit substantial bonding strength at temperatures above 120 °C and only one is resistant at 180 °C. The AS60/AW60 adhesive showed the best results for all three substrates: 1.6 MPa for epoxy sheets and PA66-GF, and 1.4 MPa for PPS-GF40. Additionally, the influence of the surface treatment with cold plasma was evaluated on a clean and activated bonding surface, causing a 30% increase in the shear strength. Full article
(This article belongs to the Special Issue New Advances in Heat Transfer and Fluid Flow)
Show Figures

Figure 1

11 pages, 2888 KiB  
Article
The Rapid Implementation of Ad Hoc Tele-Critical Care Respiratory Therapy (eRT) Service in the Wake of the COVID-19 Surge
by Margarete Pierce, Steven W. Gudowski, Karsten J. Roberts, Anthony Jackominic, Karen K. Zumstein, Amanda Shuttleworth, Joshua Ho, Phillip Susser, Alomi Parikh, John M. Chandler, Ann Marie Huffenberger, Michael J. Scott, C. William Hanson and Krzysztof Laudanski
J. Clin. Med. 2022, 11(3), 718; https://doi.org/10.3390/jcm11030718 - 29 Jan 2022
Cited by 7 | Viewed by 4679
Abstract
A 24/7 telemedicine respiratory therapist (eRT) service was set up as part of the established University of Pennsylvania teleICU (PENN E-LERT®) service during the COVID-19 pandemic, serving five hospitals and 320 critical care beds to deliver effective remote care in lieu [...] Read more.
A 24/7 telemedicine respiratory therapist (eRT) service was set up as part of the established University of Pennsylvania teleICU (PENN E-LERT®) service during the COVID-19 pandemic, serving five hospitals and 320 critical care beds to deliver effective remote care in lieu of a unit-based RT. The eRT interventions were components of an evidence-based care bundle and included ventilator liberation protocols, low tidal volume protocols, tube patency, and an extubation checklist. In addition, the proactive rounding of patients, including ventilator checks, was included. A standardized data collection sheet was used to facilitate the review of medical records, direct audio–visual inspection, or direct interactions with staff. In May 2020, a total of 1548 interventions took place, 93.86% of which were coded as “routine” based on established workflows, 4.71% as “urgent”, 0.26% “emergent”, and 1.17% were missing descriptors. Based on the number of coded interventions, we tracked the number of COVID-19 patients in the system. The average intervention took 6.1 ± 3.79 min. In 16% of all the interactions, no communication with the bedside team took place. The eRT connected with the in-house respiratory therapist (RT) in 66.6% of all the interventions, followed by house staff (9.8%), advanced practice providers (APP; 2.8%), and RN (2.6%). Most of the interaction took place over the telephone (88%), secure text message (16%), or audio-video telemedicine ICU platform (1.7%). A total of 5115 minutes were spent on tasks that a bedside clinician would have otherwise executed, reducing their exposure to COVID-19. The eRT service was instrumental in several emergent and urgent critical interventions. This study shows that an eRT service can support the bedside RT providers, effectively monitor best practice bundles, and carry out patient–ventilator assessments. It was effective in certain emergent situations and reduced the exposure of RTs to COVID-19. We plan to continue the service as part of an integrated RT service and hope to provide a framework for developing similar services in other facilities. Full article
(This article belongs to the Special Issue Delivery of Anesthesia: Pre-Operative and Post-Operative)
Show Figures

Figure 1

13 pages, 3155 KiB  
Article
Deformation-Assisted Joining of Sheets to Tubes by Annular Sheet Squeezing
by Luis M. Alves, Rafael M. Afonso, Frederico L.R. Silva and Paulo A.F. Martins
Materials 2019, 12(23), 3909; https://doi.org/10.3390/ma12233909 - 26 Nov 2019
Cited by 9 | Viewed by 2790
Abstract
This paper is built upon the deformation-assisted joining of sheets to tubes, away from the tube ends, by means of a new process developed by the authors. The process is based on mechanical joining by means of form-fit joints that are obtained by [...] Read more.
This paper is built upon the deformation-assisted joining of sheets to tubes, away from the tube ends, by means of a new process developed by the authors. The process is based on mechanical joining by means of form-fit joints that are obtained by annular squeezing (compression) of the sheet surfaces adjacent to the tubes. The concept is different from the fixing of sheets to tubes by applying direct loading on the tubes, as is currently done in existing deformation-assisted joining solutions. The process is carried out at room temperature and its development is a contribution towards ecological and sustainable manufacturing practices due to savings in material and energy consumption and to easier end-of-life disassembly and recycling when compared to alternative processes based on fastening, riveting, welding and adhesive bonding. The paper is focused on the main process parameters and special emphasis is put on sheet thickness, squeezing depth, and cross-section recess length of the punches. The presentation is supported by experimentation and finite element modelling, and results show that appropriate process parameters should ensure a compromise between the geometry of the mechanical interlocking and the pull-out strength of the new sheet–tube connections. Full article
Show Figures

Graphical abstract

10 pages, 3381 KiB  
Article
Graphene-Based Wireless Tube-Shaped Pressure Sensor for In Vivo Blood Pressure Monitoring
by Nagisa Inoue, Yoshihiko Koya, Norihisa Miki and Hiroaki Onoe
Micromachines 2019, 10(2), 139; https://doi.org/10.3390/mi10020139 - 20 Feb 2019
Cited by 19 | Viewed by 6798
Abstract
We propose a wireless pressure sensor composed of a graphene sheet and a transmitter coil integrated with a polydimethylsiloxane (PDMS) tube. The pressure inside the tube was monitored wirelessly using an external receiver coil. We then monitored the typical blood pressure range, 12–20 [...] Read more.
We propose a wireless pressure sensor composed of a graphene sheet and a transmitter coil integrated with a polydimethylsiloxane (PDMS) tube. The pressure inside the tube was monitored wirelessly using an external receiver coil. We then monitored the typical blood pressure range, 12–20 kPa, using this fabricated sensor by changing the turn number of the receiver coil and the overlapping length of the coils. Furthermore, we demonstrated wireless blood pressure measurement by connecting our sensor to the blood vessel of a rat. Our results suggested that this sensor can be easily inserted between an implantable medical device and blood vessels for in vivo blood pressure monitoring. The proposed wireless pressure sensor could also be suitable for monitoring in vivo implanted medical systems, such as artificial organs and pump systems. Full article
Show Figures

Figure 1

Back to TopTop