Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = shale inter-layer sandstone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18485 KB  
Article
Astronomical Forcing of Fine-Grained Sedimentary Rocks and Its Implications for Shale Oil and Gas Exploration: The BONAN Sag, Bohai Bay Basin, China
by Jianguo Zhang, Qi Zhong, Wangpeng Li, Yali Liu, Peng Li, Pinxie Li, Shiheng Pang and Xinbiao Yang
J. Mar. Sci. Eng. 2025, 13(6), 1080; https://doi.org/10.3390/jmse13061080 - 29 May 2025
Viewed by 558
Abstract
Fine-grained sedimentary rocks are ideal carriers for astronomical cycle analysis as they can record and preserve significant astronomical cycle signals. Spectral analysis using the Multi-taper Method (MTM) and Evolutionary Harmonic Analysis (EHA) using the Fast Fourier Transform (FFT) were conducted on natural gamma [...] Read more.
Fine-grained sedimentary rocks are ideal carriers for astronomical cycle analysis as they can record and preserve significant astronomical cycle signals. Spectral analysis using the Multi-taper Method (MTM) and Evolutionary Harmonic Analysis (EHA) using the Fast Fourier Transform (FFT) were conducted on natural gamma data from key wells in the Es3l sub-member in the Bonan Sag, Bohai Bay Basin, China. Gaussian bandpass filtering was applied using a short eccentricity cycle of 100 ka, and a “floating” astronomical time scale for the Es3l sub-member (Lower 3rd sub-member of Shahejie Formation in Eocene) was established using magnetic stratigraphic ages as boundaries. Stratigraphic divisions were made for single wells in the Es3l of the Bonan Sag, and a stratigraphic framework was established based on correlations between key wells. The research results indicate the following: Firstly, the Es3l of the Bonan Sag records significant astronomical cycle signals, with an optimal sedimentation rate of 8.39 cm/ka identified. Secondly, the cyclical thicknesses corresponding to long eccentricity, short eccentricity, obliquity, and precession cycles are 38.9 m, 9.7 m, 4.6–3.4 m, and 1.96–1.66 m, respectively. Thirdly, the Es3l sub-member stably records 6 long eccentricity cycles and 26 short eccentricity cycles, and the short eccentricity curve is used as a basis for stratigraphic division for high-precision stratigraphic correlations. Fourthly, the quality of sandstone-interbedded mudrock is jointly controlled by the short eccentricity and precession. Eccentricity maximum values result in thicker sandstone interlayers, while minimum precession values promote the thickness of sandstone interlayers. Through astronomical cycle analysis, the depositional evolution mechanism of sandstone-interbedded mudrock is revealed. Combined with the results of high-precision stratigraphic division, this can provide a basis for fine evaluation and “sweet spot” prediction of lacustrine shale oil reservoirs. Full article
Show Figures

Figure 1

13 pages, 53690 KB  
Article
Tight Sandstone Reservoir Characteristics and Sand Body Distribution of the Eighth Member of Permian Shihezi Formation in the Longdong Area, Ordos Basin
by Zhiqiang Chen, Jingong Zhang, Zishu Yong and Hongxing Ma
Minerals 2025, 15(5), 463; https://doi.org/10.3390/min15050463 - 29 Apr 2025
Cited by 1 | Viewed by 516
Abstract
The eighth member of the Permian Shihezi Formation is one of the main tight sandstone gas layers in the Longdong Area of Ordos Basin, and the source rocks are dark mudstones and shales located in the Shanxi Formation and Taiyuan Formation of the [...] Read more.
The eighth member of the Permian Shihezi Formation is one of the main tight sandstone gas layers in the Longdong Area of Ordos Basin, and the source rocks are dark mudstones and shales located in the Shanxi Formation and Taiyuan Formation of the Permian. The tight muddy sandstone at the top provides shielding conditions and constitutes traps. The lithology is mainly lithic quartz sandstone, followed by lithic sandstone. The reservoir space is mainly dissolved pores, inter crystalline pores, intergranular pores and so on. Clay minerals are the main interstitial materials, and chlorite has the highest content in it, a product of alkaline, moderate- to high-temperature, reducing conditions, effectively inhibited quartz cementation and enhanced secondary porosity development during mesodiagenesis. The average porosity of the reservoir is about 4.01%, and the average permeability is about 0.5 × 10−3 μm3, which is a typical low porosity and ultra-low permeability tight reservoir. The thickness of the sandstone reservoir in the study area is from 5 m to more than 25 m, mainly in the NE direction. The sand bodies are distributed in lenses on the plane. Full article
(This article belongs to the Special Issue Deep Sandstone Reservoirs Characterization)
Show Figures

Figure 1

20 pages, 5439 KB  
Article
Research and Application of Fracturing Testing Technology in a South-West Weizhou Oilfield Shale Oil Exploration Well
by Wenbo Meng, Yan Jin, Yunhu Lu, Guanlong Ren and Shiming Wei
Energies 2025, 18(8), 2007; https://doi.org/10.3390/en18082007 - 14 Apr 2025
Viewed by 550
Abstract
A numerical analysis model for sand-mudstone interbedded fracturing based on field application in South China is presented in this paper. The proposed model can analyze the influence laws of different longitudinal lithology changes, stress difference changes, different interlayer positions, and fracturing fluid construction [...] Read more.
A numerical analysis model for sand-mudstone interbedded fracturing based on field application in South China is presented in this paper. The proposed model can analyze the influence laws of different longitudinal lithology changes, stress difference changes, different interlayer positions, and fracturing fluid construction parameters on fracture characteristics. Based on the study of fracture characteristics of low-modulus mudstone, a set of layered stress loading experimental devices was independently designed and developed. Experimental analysis shows that the stress difference has a limited limiting effect on the interlayer propagation of hydraulic fracturing fractures in the Weizhou Formation, and the fracture height is prone to interlayer propagation. The injection of high-rate and high-viscosity fracturing fluid has a significant impact on the hydraulic fracture surface penetration. Numerical simulation analysis shows that the smaller the elastic modulus of the mudstone interlayer and the lower the minimum horizontal principal stress compared to the sandstone layer, the more favorable it is for fracture propagation. Field application showed that the highest injection rate of the fracturing pump in well A was 7 m3/min for south-west Weizhou oilfield shale oil. The interpretation results of the acoustic logging after fracturing showed obvious response characteristics of the formation fractures, and the farthest detection fracture response well distance was 12 m, indicating a good fracturing transformation effect and providing technical support for subsequent offshore shale oil fracturing construction. Full article
Show Figures

Figure 1

12 pages, 6163 KB  
Article
Study on the Wellbore Instability Mechanism in the Longtan Formation with Soft/Hard Thin Interlayers in the South Sichuan Basin
by Jianhua Guo, Yu Sang, Beiqiao Meng, Lianbin Xia, Yangsong Wang, Chengyu Ma, Tianyi Tan and Bin Yang
Processes 2025, 13(3), 727; https://doi.org/10.3390/pr13030727 - 3 Mar 2025
Cited by 1 | Viewed by 861
Abstract
The lithology of the transitional facies of the Longtan Formation in the southern Sichuan Basin is complex, with soft/hard thin interlayers of mud shale, sandstone, and limestone. Drilling this layer often results in wellbore instability, including frequent blockages, tripping resistance, and sticking. This [...] Read more.
The lithology of the transitional facies of the Longtan Formation in the southern Sichuan Basin is complex, with soft/hard thin interlayers of mud shale, sandstone, and limestone. Drilling this layer often results in wellbore instability, including frequent blockages, tripping resistance, and sticking. This study focuses on a shale gas block in the Longtan Formation in Zigong, where a geomechanical profile was established by integrating ground stress, rock parameter tests, and logging data. The critical collapse pressure was calculated, and wellbore instability was simulated using the Mohr–Coulomb failure criterion and the discrete element method. Results indicate significant variability in the mechanical strength of the rocks, with notable longitudinal heterogeneity and a high risk of wellbore instability. The critical collapse pressure equivalent density ranges from 1.05–1.69 g/cm3. Under low-density conditions, wellbore expansion and reduction coexist due to local shear and dropping. Even when the drilling fluid density exceeds the collapse pressure equivalent, stress imbalance can still cause localized dropping at lithologic interfaces. These findings offer valuable insights into the mechanical mechanisms behind wellbore instability in formations with soft/hard thin interlayers and provide guidance for the prevention and control of wellbore instability and associated risks. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 7489 KB  
Article
Pore Structure and Fractal Characteristics of Inter-Layer Sandstone in Marine–Continental Transitional Shale: A Case Study of the Upper Permian Longtan Formation in Southern Sichuan Basin, South China
by Jianguo Wang, Jizhen Zhang, Xiao Xiao, Ya’na Chen and Denglin Han
Fractal Fract. 2025, 9(1), 11; https://doi.org/10.3390/fractalfract9010011 - 29 Dec 2024
Cited by 6 | Viewed by 1283
Abstract
With the evolution of unconventional oil and gas exploration concepts from source rocks and reservoirs to carrier beds, the inter-layer sandstone carrier bed within marine–continental transitional shale strata has emerged as a significant target for oil and gas exploration. The inter-layer sandstone is [...] Read more.
With the evolution of unconventional oil and gas exploration concepts from source rocks and reservoirs to carrier beds, the inter-layer sandstone carrier bed within marine–continental transitional shale strata has emerged as a significant target for oil and gas exploration. The inter-layer sandstone is closely associated with the source rock and differs from conventional tight sandstone in terms of sedimentary environment, matrix composition, and the characteristics of reservoir microscopic pore development. Preliminary exploration achievements display that the inter-layer sandstone is plentiful in gas content and holds promising prospects for exploration and development. Consequently, it is essential to investigate the gas-rich accumulation theory specific to the inter-layer sandstone reservoir in transitional facies. Pore development characteristics and heterogeneity are crucial aspects of oil and gas accumulation research, as they influence reservoir seepage performance and capacity. This paper employs total organic carbon analysis, X-ray diffraction, rock thin section examination, field emission scanning electron microscopy, physical analysis, high-pressure mercury intrusion analysis, gas adsorption experiments, and fractal theory to explore the reservoir development characteristics of the sandstone samples from the Upper Permian marine–continental transitional facies Longtan Formation in the southern Sichuan Basin. It also attempts to combine high-pressure mercury intrusion analysis and gas adsorption experiments to describe the structural and fractal characteristics of pores at different scales in a segmented manner. The findings reveal that the sandstone type of the Longtan Formation is mainly lithic sandstone. The pore size distribution of the sandstone primarily falls below 30 nm and above 1000 nm, with the main pore types being inter-granular pores and micro-fractures in clay minerals. The pore volume and specific surface area are largely attributed to the micropores and mesopores of clay minerals. The pore morphology is complex, exhibiting strong heterogeneity, predominantly characterized by slit-like and ink bottle-like features. Notably, there are discernible differences in reservoir structural characteristics and homogeneity between muddy sandstone and non-muddy sandstone. The pore morphology is complex, exhibiting strong heterogeneity, predominantly characterized by slit-like and ink bottle-like features. Notably, there are discernible differences in reservoir structural characteristics and homogeneity between muddy sandstone and non-muddy sandstone. Full article
Show Figures

Figure 1

23 pages, 12010 KB  
Article
Geological and Engineering Integration Fracturing Design and Optimization Study of Liushagang Formation in Weixinan Sag
by Yinghao Shen, Bing Liu, Hongfeng Jiang, Hong Mao, Mingrui Li and Zhicheng Yang
J. Mar. Sci. Eng. 2024, 12(10), 1821; https://doi.org/10.3390/jmse12101821 - 12 Oct 2024
Cited by 2 | Viewed by 1171
Abstract
The Weixinan Sag in the Beibuwan Basin is rich in shale oil resources. However, the reservoirs exhibit rapid phase changes, strong compartmentalization, thin individual layers, and high-frequency vertical variations in the thin interbedded sandstone and mudstone. These factors can restrict the height of [...] Read more.
The Weixinan Sag in the Beibuwan Basin is rich in shale oil resources. However, the reservoirs exhibit rapid phase changes, strong compartmentalization, thin individual layers, and high-frequency vertical variations in the thin interbedded sandstone and mudstone. These factors can restrict the height of hydraulic fracture propagation. Additionally, the low-porosity and low-permeability shale oil reservoirs face challenges such as low production rates and rapid decline. To address these issues, the Plannar3D full 3D fracturing model was used to simulate hydraulic fracture propagation and to study the main controlling factors for fracture propagation in the second member of the Liushagang Formation. Based on the concept of geological–engineering integration, a sweet spot evaluation was conducted to identify reservoirs with relatively better brittleness, reservoir properties, and oil content as the fracturing targets for horizontal wells. The UFM model was then applied to optimize fracturing parameters. This study indicates that the matrix-type oil shale has a high clay mineral content, resulting in a low Young’s modulus and poor brittleness. This makes hydraulic fracture propagation difficult and leads to less effective reservoir stimulation. In contrast, hydraulic fractures propagate more easily in high-brittleness interlayer-type oil shale. Therefore, it is recommended to prioritize the extraction of shale oil from interlayer-type oil shale reservoirs. The difference in interlayer stress is identified as the primary controlling factor for cross-layer fracture propagation in the study area. Based on the concept of geological–engineering integration, a sweet spot evaluation standard was established for the second member of the Liushagang Formation, considering both reservoir quality and engineering quality. Four sweet spot zones of interlayer-type oil shale reservoirs were identified according to this evaluation standard. To achieve uniform fracture initiation, a differentiated segment and cluster design was implemented for certain high-angle sections of well WZ11-6-5d. Interlayer-type oil shale was selected as the fracturing target, and the UFM was used for hydraulic fracture propagation simulation. Fracturing parameters were optimized with a focus on hydraulic fracture characteristics and the estimated ultimate recovery (EUR). The optimization results were as follows: a single-stage length of 50 m, cluster spacing of 15 m, pump injection rate of 10 m3/min, fluid intensity of 25 m3/m, and proppant intensity of 3.5 t/m. The application of these optimized fracturing parameters in field operations resulted in successful fracturing and the achievement of industrial oil flow. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

17 pages, 10728 KB  
Article
Pressure Analysis of Onshore and Offshore Shale Gas Reservoirs under Constant-Rate Condition Considering Thin Sandstone Layer and Interlayer Cross-Flow
by Shiming Wei and Kaixuan Qiu
J. Mar. Sci. Eng. 2024, 12(3), 457; https://doi.org/10.3390/jmse12030457 - 6 Mar 2024
Cited by 1 | Viewed by 1343
Abstract
The extraction of shale gas from onshore and offshore shale gas reservoirs will play an important role in meeting China’s future energy needs, which will not only help alleviate the energy crisis but also contribute to climate change mitigation. As for the target [...] Read more.
The extraction of shale gas from onshore and offshore shale gas reservoirs will play an important role in meeting China’s future energy needs, which will not only help alleviate the energy crisis but also contribute to climate change mitigation. As for the target shale formation enriched by thin sandstone layers in typical basins, an analytical calculation method is proposed to perform pressure analysis for multi-layer shale gas reservoirs considering the adsorption–desorption characteristics of shale layer and the interlayer cross-flow. Firstly, the changes in storage capacity and flow resistance are obtained by using the distance of investigation equation. According to the electrical analogy, the equivalent total storage capacity and flow resistance can be calculated considering the sandstone-shale crossflow. Because production from one time step to the other causes depletion of the storage capacity, the reservoir pressure in different time steps can be calculated based on the material balance equation. Numerical models have been constructed based on three typical reservoir lithology combinations (sandstone-shale, shale-sandstone-shale and sandstone-shale-sandstone) to validate the accuracy of the proposed analytical calculation method. Furthermore, three important factors (porosity, the ratio of horizontal/vertical permeability (kh/kv) and the layer thickness) have been selected for the sensitivity analysis to verify the stability. The comparative results indicate that the proposed analytical calculation method is suitable for pressure analysis in shale gas reservoirs containing thin sandstone layers. It will provide theoretical support for the further enhancement of the production of this type of gas reservoirs. Full article
(This article belongs to the Special Issue Production Prediction in Onshore and Offshore Tight Reservoirs)
Show Figures

Figure 1

17 pages, 14542 KB  
Article
Lacustrine Shale Diagenesis—A Case Study of the Second Member of the Funing Formation in the Subei Basin
by Shuping Wang, Cunfei Ma, Xue Sun and Shili Liu
Processes 2023, 11(7), 2009; https://doi.org/10.3390/pr11072009 - 5 Jul 2023
Cited by 4 | Viewed by 1715
Abstract
Shale diagenesis differs from that of sandstone and carbonate rocks with regard to the type, evolution stage, and evolution mode. The quality of shale reservoirs is closely linked to the extent of diagenetic evolution. This study identifies the types and characteristics of shale [...] Read more.
Shale diagenesis differs from that of sandstone and carbonate rocks with regard to the type, evolution stage, and evolution mode. The quality of shale reservoirs is closely linked to the extent of diagenetic evolution. This study identifies the types and characteristics of shale diagenesis using thin sections and scanning electron microscopy (SEM) observations. The stages of shale diagenesis are determined by analyzing organic matter evolution and clay mineral transformation and establishing a diagenetic evolution sequence. This paper describes the comprehensive diagenetic evolution of organic matter, clay minerals, clastic particles, and carbonate minerals to determine the diagenesis types, diagenetic sequences, and pore evolution occurring during diagenetic evolution. The results show that the diagenesis types of shale in the second member of the Funing Formation include compaction, dissolution, cementation, metasomatism, dolomitization, syneresis, and transformation of clay minerals, as well as thermal evolution of organic matter. The middle diagenetic A stage is prevalent, with some areas in the early and middle diagenetic B stages. The shale underwent a diagenetic evolution sequence, including the collapse and shrinkage of montmorillonite interlayers in the early stage; the rapid formation and transformation of illite and smectite mixed layers, massive hydrocarbon generation of organic matters, and dissolution of unstable components in the middle stage; and the occurrence of fractures filled with gypsum, quartz, ferrocalcite, or other authigenic minerals in the later stage. Dissolution pores and fractures are the dominant shale reservoirs of the second member of the Funing Formation in the Subei Basin. The results provide new insights into understanding the formation and evolution of reservoir spaces during shale diagenesis and information for the exploration and development of lacustrine shale oil and gas. Full article
Show Figures

Figure 1

24 pages, 5893 KB  
Article
Comparing the Pore Networks of Coal, Shale, and Tight Sandstone Reservoirs of Shanxi Formation, Qinshui Basin: Inspirations for Multi-Superimposed Gas Systems in Coal-Bearing Strata
by Difei Zhao, Jiaming Zhang, Xin Guan, Dandan Liu, Qinxia Wang, Weiwei Jiao, Xueqing Zhou, Yingjie Li, Geoff Wang and Yinghai Guo
Appl. Sci. 2023, 13(7), 4414; https://doi.org/10.3390/app13074414 - 30 Mar 2023
Cited by 9 | Viewed by 2511
Abstract
Transitional upper carboniferous Shanxi Formation coal-bearing strata in Qinshui Basin have been proven to be a set of mixed unconventional gas-bearing reservoirs forming a multi-superimposed gas system that consists of multiple independent fluid pressure systems vertically through the strata. An experimental protocol was [...] Read more.
Transitional upper carboniferous Shanxi Formation coal-bearing strata in Qinshui Basin have been proven to be a set of mixed unconventional gas-bearing reservoirs forming a multi-superimposed gas system that consists of multiple independent fluid pressure systems vertically through the strata. An experimental protocol was designed to compare the pore networks in high-rank coal, shale, and tight sandstone reservoirs from Shanxi Formation using quantitative and qualitative experimental methods, including high-pressure mercury injection porosimetry (MIP), low-pressure nitrogen gas adsorption (LN2GA), and argon ion polishing–field emission scanning electron microscope (AIP-FESEM). The results show that genetic and structural differences in pore types, morphology, abundance, and proportion in coal, shale, and tight sandstone reservoirs are significant, reflecting strong heterogeneity characteristics. Pore networks determine the roles of different types of reservoirs in gas-bearing systems through differentiated pore structure, development degree, and spatial distribution. Due to the differences in nanopore development and connectivity, coal and tight sandstone reservoirs provide important reservoir spaces for adsorbed and free gas in the system. Thus, they become influential factors controlling the relationship between the gas-bearing subsystems with different fluid pressures. The lack of mesopores in shale and relatively weaker heterogeneity between layers lead to the phenomenon that continuously developed shales of a specific thickness are more likely to be the interlayers that divide the superimposed gas-bearing system. Systematic comparison of pore development characteristics will provide scientific support to further explain the formation mechanism of multi-superimposed gas systems in coal-bearing strata from the perspective of pore networks and provide guidance for the development of unconventional natural gas in coal-bearing strata. Full article
Show Figures

Figure 1

15 pages, 21330 KB  
Article
Integrated Assessment of Marine-Continental Transitional Facies Shale Gas of the Carboniferous Benxi Formation in the Eastern Ordos Basin
by Weibo Zhao, Zhigang Wen, Hui Zhang, Chenjun Wu, Yan Liu, Huanxin Song, Liwen Zhang, Yingyang Xi and Lu Sun
Energies 2021, 14(24), 8500; https://doi.org/10.3390/en14248500 - 16 Dec 2021
Cited by 11 | Viewed by 2879
Abstract
In the Benxi Formation of the Carboniferous system of the Upper Paleozoic in the Ordos Basin, there are many sets of coal measures dark organic-rich shale, being marine continental transitional facies, with significant unconventional natural gas potential. Previous studies are only limited to [...] Read more.
In the Benxi Formation of the Carboniferous system of the Upper Paleozoic in the Ordos Basin, there are many sets of coal measures dark organic-rich shale, being marine continental transitional facies, with significant unconventional natural gas potential. Previous studies are only limited to the evaluation of tight sandstone reservoir in this set of strata, with no sufficient study on gas bearing and geological characteristics of organic-rich shale, restricting the exploration and evaluation of shale gas resources. In this study, analysis has been conducted on the organic carbon content, the major elements, the trace elements, and the mineral composition of core samples from the Benxi Formation in key drilling sections. In addition, qualitative and quantitative pore observation and characterization of core samples have been conducted. The sedimentary environments and reservoir characteristics of the shale of the Benxi Formation have been analyzed. Combined with the gas content analyzing the results of the field coring samples, the shale gas resource potentials of the Benxi Formation have been studied, and the geological characteristics of the Benxi Formation shale gas in the eastern Ordos Basin have been made clear, to provide a theoretical basis for shale gas resource evaluation of the Benxi Formation in the Ordos Basin. The results show that (1) in the Hutian Member, Pangou Member, and Jinci Member of the Benxi Formation, organic-rich shale is well developed, with the characteristics of seawater input as a whole. There is a slight difference in sedimentary redox index, which shows that the reducibility increases gradually from bottom to top. (2) There is an evident difference in the mineral characteristics of shale in these three members. The Hutian Member is rich in clay minerals, while the Jinci Member is high in quartz minerals. (3) The pores are mainly inorganic mineral intergranular pores, clay interlayer fractures, and micro fractures, and organic matter pores are developed on the surface of local organic matter. (4) The mud shale in the Jinci Member has a large cumulative thickness, has relatively high gas-bearing property, and is rich in brittle minerals. The Jinci Member is a favorable section for shale gas exploration of the Benxi Formation. Full article
(This article belongs to the Special Issue Shale Oil and Gas Accumulation Mechanism)
Show Figures

Figure 1

25 pages, 9788 KB  
Article
Pore Type, Pore Structure, and Controlling Factors in the Late Triassic Lacustrine Yanchang Shale, Ordos Basin, China
by Ming Cheng, Yuhong Lei, Xiaorong Luo, Likuan Zhang, Xiangzeng Wang, Lixia Zhang, Chengfu Jiang and Jintao Yin
Energies 2021, 14(11), 3053; https://doi.org/10.3390/en14113053 - 25 May 2021
Cited by 4 | Viewed by 2687
Abstract
Organic-rich lacustrine shales in the Upper Triassic Yanchang Formation with thermal maturity mainly in the oil window are the main shale oil and shale gas system in the lacustrine strata of the Ordos Basin, China. Pore systems are important for the storage and [...] Read more.
Organic-rich lacustrine shales in the Upper Triassic Yanchang Formation with thermal maturity mainly in the oil window are the main shale oil and shale gas system in the lacustrine strata of the Ordos Basin, China. Pore systems are important for the storage and transfer of shale oil and gas. The main objectives of this study are to identify the pore types and pore structures and investigate the controlling factors for pore types, pore structures, and total porosities of the lacustrine Yanchang Shale. In this study, organic-rich mudstones, mudstones with siltstone interlayers, siltstone, and sandstones were selected from 15 wells in the southern Ordos Basin. X-ray diffraction, pyrolysis, scanning electron microscopy (SEM), low-pressure nitrogen adsorption analysis, and helium porosimetry were conducted to investigate the mineral compositions, pore types, pore structures, porosities, and controlling factors. Siltstone and sandstone interlayers heterogeneously developed in the Yanchang Shale. The petrology, mineral composition, geochemistry, pore type, pore structure, and porosity of siltstone interlayers are different from those of mudstones. The siltstone and sandstone interlayers usually have more quartz and feldspars, greater detrital grain sizes, and relatively better grain sorting but are lower in clay minerals, total organic carbon (TOC), amount of free liquid hydrocarbons values (S1), and total residual hydrocarbons values (S2), compared to mudstones. Interparticle (interP), intraparticle (intraP) pores, and organic pores (OPs) were developed in both siltstones and mudstones. OPs were observed in samples with lower thermal maturity (e.g., 0.5–0.85%). The inorganic pore size is greater than that of OPs. Additionally, the inorganic pore diameters in siltstone interlayers are also greater than those in mudstones. Organic-rich mudstones generally have higher pore volumes (PVs) of pores with sizes less than 10 nm, pore volumes of pores with sizes between 10 and 50 nm (PV, 10–50 nm), and specific surface area (SSA), but they have lower PVs of pores with sizes greater than 50 nm, total PV, and porosity when compared to siltstone and sandstone interlayers. The dominant pore type in mudstones is OPs and TOC (first order), sources and OM types (second order), and thermal maturity (third order), while the abundances of rigid grains with greater sizes and grain sorting are the main controlling factors of pore structures, SSA and PV. Both inorganic pores and organic pores are abundant in the siltstone interlayers. The pore size distribution (PSD), PV, and porosity of siltstone interlayers are related to the abundance of rigid grains (first order), grain sorting (second order), grain size (third order), and carbonate cement content. The total PV and porosity of Yanchang Shale reservoirs may have increased with the increased abundance of siltstone and sandstone interlayers. Full article
Show Figures

Figure 1

20 pages, 10596 KB  
Article
Classification of Red-Bed Rock Mass Structures and Slope Failure Modes in South China
by Cuiying Zhou, Xu Yang, Yanhao Liang, Zichun Du, Zhen Liu, Wei Huang and Weihua Ming
Geosciences 2019, 9(6), 273; https://doi.org/10.3390/geosciences9060273 - 21 Jun 2019
Cited by 19 | Viewed by 7782
Abstract
Red beds are Meso–Cenozoic continental sedimentary strata that are mainly composed of gravel stone, sandstone, siltstone, mudstone, and shale and occasionally have interlayers of limestone, halite, and gypsum. As a typical rock mass, red beds are widely distributed throughout South China. In a [...] Read more.
Red beds are Meso–Cenozoic continental sedimentary strata that are mainly composed of gravel stone, sandstone, siltstone, mudstone, and shale and occasionally have interlayers of limestone, halite, and gypsum. As a typical rock mass, red beds are widely distributed throughout South China. In a typical tropical and subtropical continental environment, red beds are the product of multiple sedimentary cycles, which have resulted in complicated rock mass structures that play an important role in rock mass stability. It is thus of great significance to investigate the influence of different rock mass structures on the stability of red-bed slopes. In this paper, the geological formation history of red beds in South China is described. The main features of red-bed rock mass slopes in South China are discussed. The main combinations of inner geomechanical structures comprise: (1) mega-thick soft rock structures; (2) mega-thick hard rock structures; (3) thick hard rock structures with weak intercalation; and (4) soft–hard interbedded structures. In addition, the features of slope failure are analyzed, and four common failure modes are identified from the statistical data: (a) weathering spalling and scouring; (b) rock falls; (c) landslides; and (d) tensile dumping. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

17 pages, 19120 KB  
Article
Characteristic and Geological Implications of Major Elements and Rare Earth Elements of Triassic Chang 7 Oil Shale in Tongchuan City, Southern Ordos Basin (China)
by Delu Li, Rongxi Li, Tao Xue, Baoping Wang, Futian Liu, Bangsheng Zhao and Di Zhao
Minerals 2018, 8(4), 157; https://doi.org/10.3390/min8040157 - 12 Apr 2018
Cited by 17 | Viewed by 5359
Abstract
The study of the oil shale from Triassic Chang 7 oil layer in Ordos Basin is of great importance to oil and gas resources investigation. Based on systematic analyses of major elements and rare earth elements of twelve oil shale samples and grain [...] Read more.
The study of the oil shale from Triassic Chang 7 oil layer in Ordos Basin is of great importance to oil and gas resources investigation. Based on systematic analyses of major elements and rare earth elements of twelve oil shale samples and grain size analyses of four sandstone samples from the Yishicun Profile in southern Ordos Basin, the elements characteristics and corresponding geological implications are discussed. The Al/Si and Si/(Si + Al + Fe) of oil shale samples are in small range, with the averages of 0.29 and 0.67, indicating that quartz is the main mineral and the oil shale deposits near terrigenous provenance. Rare earth elements of the oil shale illustrate the enrichment of light rare earth elements (LREEs) and deficit of heavy rare earth elements (HREEs). The Chondrite- and North American shale composite (NASC)-normalized distributing patterns manifested that the oil shale have been derived from the same terrigenous source and controlled by a similar sedimentary environment. The vertical variation of major elements and REEs show that the heterogeneity of oil shale samples is relatively low. By grain size analysis, the interlayer sandstone is the typical turbidite. The Chemical index of alteration (CIA) and (Fe + Mn)/Ti of the oil shale samples ranges in 65.02–78.09 and 6.60–25.82, respectively, indicating that during oil shale sedimentation, the paloeclimate is warm and humid with moderate chemical weathering and that there are obviously hydrothermal fliud activities. The correlation between δCeN and δEuN, total rare earth elements (ΣREE) and (Dy/Sm)N, implying that the diagenesis of oil shale is relatively low with middle diagenetic stage A period. The Ceanom of oil shale samples ranges from −0.094 to −0.049, suggesting that the redox condition of oil shale sedimentation is dominated by strong reducing condition, and the (La/Yb)n is from 1.3 to 2.1, manifesting the whole sedimentary rate of oil shale is relatively low. By the comparison with REEs distribution characteristics from surrounding potential provenance, the main provenances of Chang 7 sedimentation in southern Ordos Basin are from Yinshan Mountain and Qinling-Dabie Mountain. Full article
Show Figures

Figure 1

Back to TopTop