Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = sfCherry2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11438 KiB  
Article
Mycobacterium tuberculosis PPE18 Protein Bodies in Insect Cells: A Candidate Tuberculosis Vaccine
by Pu Wang, Gang Zhang, Yurong Cai, Lingling Jiang, Xiaoxia Niu, Sinong Zhang, Weifeng Gao, Zhiwei Wu and Yong Li
Vaccines 2025, 13(7), 671; https://doi.org/10.3390/vaccines13070671 - 23 Jun 2025
Viewed by 495
Abstract
Background/Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis and the leading cause of death from a single infection with the microorganism. Tuberculosis remains globally one of the major diseases leading to high mortality rates, with serious implications for public health and economic [...] Read more.
Background/Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis and the leading cause of death from a single infection with the microorganism. Tuberculosis remains globally one of the major diseases leading to high mortality rates, with serious implications for public health and economic development. Therefore, tuberculosis prevention and control is crucial for global health and socio-economic stability. The development of effective preventive vaccines remains an urgent task in the fight against tuberculosis. Methods: The Mycobacterium tuberculosis antigen PPE18 was fused to Zera, and Bacmid was extracted and transfected into Sf9, which was purified and characterized for the formation of nanoparticle protein bodies. BALB/c mice and calves were immunized, and the immunogenicity of the nanoparticle vaccine was assessed by serum antibodies and splenic lymphocytes. Results: Zera-71CA-mCherry can be expressed in Sf9 cells, forming 0.5–1.2 μm protein bodies. Excising the mCherry sequence, Zera-71CA/Zera-PPE18 candidate nanoparticle-immunized mice were able to elicit serum antibody levels and the proliferation of splenic lymphocytes, and immunized calves were determined to have high levels of serum antibody levels, and IFN-γ and TNF-α levels. Conclusions: The results indicated that Zera-71CA/Zera-PPE18 recombinant nanoparticles had good immunogenicity as a subunit vaccine in both BALB/c mice and calves and are potential candidates for further development as effective subunit vaccines. Full article
Show Figures

Figure 1

10 pages, 638 KiB  
Study Protocol
Health Benefits of Montmorency Tart Cherry Juice Supplementation in Adults with Mild to Moderate Ulcerative Colitis: A Protocol for a Placebo Randomized Controlled Trial
by Jonathan Sinclair, Stephanie Dillon, Robert Allan, Johanne Brooks-Warburton, Terun Desai, Charlotte Lawson and Lindsay Bottoms
Methods Protoc. 2023, 6(5), 76; https://doi.org/10.3390/mps6050076 - 27 Aug 2023
Cited by 3 | Viewed by 3470
Abstract
Ulcerative colitis, characterized by its relapsing and remissive nature, negatively affects perception, body image, and overall quality of life. The associated financial burden underscores the need for alternative treatment approaches with fewer side effects, alongside pharmaceutical interventions. Montmorency tart cherries, rich in anthocyanins, [...] Read more.
Ulcerative colitis, characterized by its relapsing and remissive nature, negatively affects perception, body image, and overall quality of life. The associated financial burden underscores the need for alternative treatment approaches with fewer side effects, alongside pharmaceutical interventions. Montmorency tart cherries, rich in anthocyanins, have emerged as a potential natural anti-inflammatory agent for ulcerative colitis. This manuscript outlines the study protocol for a randomized placebo-controlled trial investigating the effects of Montmorency tart cherry in individuals with ulcerative colitis. The trial aims to recruit 40 participants with mild to moderate disease activity randomly assign them to either a Montmorency tart cherry or placebo group. The intervention will span 6 weeks, with baseline and 6-week assessments. The primary outcome measure is the Inflammatory Bowel Disease Quality of Life Questionnaire. Secondary outcomes include other health-related questionnaires and biological indices. Statistical analysis will adhere to an intention-to-treat approach using linear mixed effect models. Ethical approval has been obtained from the University of Hertfordshire (cLMS/SF/UH/05240), and the trial has been registered as a clinical trial (NCT05486507). The trial findings will be disseminated through a peer-reviewed publication in a scientific journal. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Show Figures

Figure 1

28 pages, 8574 KiB  
Article
Blue-to-Red TagFT, mTagFT, mTsFT, and Green-to-FarRed mNeptusFT2 Proteins, Genetically Encoded True and Tandem Fluorescent Timers
by Oksana M. Subach, Anna V. Vlaskina, Yulia K. Agapova, Alena Y. Nikolaeva, Konstantin V. Anokhin, Kiryl D. Piatkevich, Maxim V. Patrushev, Konstantin M. Boyko and Fedor V. Subach
Int. J. Mol. Sci. 2023, 24(4), 3279; https://doi.org/10.3390/ijms24043279 - 7 Feb 2023
Cited by 2 | Viewed by 3378
Abstract
True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent [...] Read more.
True genetically encoded monomeric fluorescent timers (tFTs) change their fluorescent color as a result of the complete transition of the blue form into the red form over time. Tandem FTs (tdFTs) change their color as a consequence of the fast and slow independent maturation of two forms with different colors. However, tFTs are limited to derivatives of the mCherry and mRuby red fluorescent proteins and have low brightness and photostability. The number of tdFTs is also limited, and there are no blue-to-red or green-to-far-red tdFTs. tFTs and tdFTs have not previously been directly compared. Here, we engineered novel blue-to-red tFTs, called TagFT and mTagFT, which were derived from the TagRFP protein. The main spectral and timing characteristics of the TagFT and mTagFT timers were determined in vitro. The brightnesses and photoconversions of the TagFT and mTagFT tFTs were characterized in live mammalian cells. The engineered split version of the TagFT timer matured in mammalian cells at 37 °C and allowed the detection of interactions between two proteins. The TagFT timer under the control of the minimal arc promoter, successfully visualized immediate-early gene induction in neuronal cultures. We also developed and optimized green-to-far-red and blue-to-red tdFTs, named mNeptusFT and mTsFT, which were based on mNeptune-sfGFP and mTagBFP2-mScarlet fusion proteins, respectively. We developed the FucciFT2 system based on the TagFT-hCdt1-100/mNeptusFT2-hGeminin combination, which could visualize the transitions between the G1 and S/G2/M phases of the cell cycle with better resolution than the conventional Fucci system because of the fluorescent color changes of the timers over time in different phases of the cell cycle. Finally, we determined the X-ray crystal structure of the mTagFT timer and analyzed it using directed mutagenesis. Full article
(This article belongs to the Special Issue Advanced Research in Fluorescent Proteins)
Show Figures

Graphical abstract

19 pages, 4448 KiB  
Technical Note
Visualization of Sirtuin 4 Distribution between Mitochondria and the Nucleus, Based on Bimolecular Fluorescence Self-Complementation
by Jeta Ramadani-Muja, Benjamin Gottschalk, Katharina Pfeil, Sandra Burgstaller, Thomas Rauter, Helmut Bischof, Markus Waldeck-Weiermair, Heiko Bugger, Wolfgang F. Graier and Roland Malli
Cells 2019, 8(12), 1583; https://doi.org/10.3390/cells8121583 - 6 Dec 2019
Cited by 20 | Viewed by 4880
Abstract
Mitochondrial sirtuins (Sirts) control important cellular processes related to stress. Despite their regulatory importance, however, the dynamics and subcellular distributions of Sirts remain debatable. Here, we investigate the subcellular localization of sirtuin 4 (Sirt4), a sirtuin variant with a mitochondrial targeting sequence (MTS), [...] Read more.
Mitochondrial sirtuins (Sirts) control important cellular processes related to stress. Despite their regulatory importance, however, the dynamics and subcellular distributions of Sirts remain debatable. Here, we investigate the subcellular localization of sirtuin 4 (Sirt4), a sirtuin variant with a mitochondrial targeting sequence (MTS), by expressing Sirt4 fused to the superfolder green fluorescent protein (Sirt4-sfGFP) in HeLa and pancreatic β-cells. Super resolution fluorescence microscopy revealed the trapping of Sirt4-sfGFP to the outer mitochondrial membrane (OMM), possibly due to slow mitochondrial import kinetics. In many cells, Sirt4-sfGFP was also present within the cytosol and nucleus. Moreover, the expression of Sirt4-sfGFP induced mitochondrial swelling in HeLa cells. In order to bypass these effects, we applied the self-complementing split fluorescent protein (FP) technology and developed mito-STAR (mitochondrial sirtuin 4 tripartite abundance reporter), a tripartite probe for the visualization of Sirt4 distribution between mitochondria and the nucleus in single cells. The application of mito-STAR proved the importation of Sirt4 into the mitochondrial matrix and demonstrated its localization in the nucleus under mitochondrial stress conditions. Moreover, our findings highlight that the self-complementation of split FP is a powerful technique to study protein import efficiency in distinct cellular organelles. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Graphical abstract

14 pages, 2845 KiB  
Article
A Highly Efficient Indirect P. pastoris Surface Display Method Based on the CL7/Im7 Ultra-High-Affinity System
by Shuntang Li, Jie Qiao, Siyu Lin, Yi Liu and Lixin Ma
Molecules 2019, 24(8), 1483; https://doi.org/10.3390/molecules24081483 - 15 Apr 2019
Cited by 14 | Viewed by 5083
Abstract
Cell surface display systems for immobilization of peptides and proteins on the surface of cells have various applications, such as vaccine generation, protein engineering, bio-conversion and bio-adsorption. Though plenty of methods have been established in terms of traditional yeast surface display systems, the [...] Read more.
Cell surface display systems for immobilization of peptides and proteins on the surface of cells have various applications, such as vaccine generation, protein engineering, bio-conversion and bio-adsorption. Though plenty of methods have been established in terms of traditional yeast surface display systems, the development of a universal display method with high efficiency remains a challenge. Here we report an indirect yeast surface display method by anchoring Im7 proteins on the surface of P. pastoris, achieving highly efficient display of target proteins, including fluorescence proteins (sfGFP and mCherry) or enzymes (human Arginase I), with a CL7 fusion tag through the ultra-high-affinity interaction between Im7 and CL7. This indirect P. pastoris surface display approach is highly efficient and provides a robust platform for displaying biomolecules. Full article
(This article belongs to the Special Issue Enzyme Immobilization and Its Applications)
Show Figures

Figure 1

Back to TopTop