Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = semicircular rings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 9672 KiB  
Article
Design and Modelling of MEMS Vibrating Internal Ring Gyroscopes for Harsh Environments
by Waqas Amin Gill, Ian Howard, Ilyas Mazhar and Kristoffer McKee
Sensors 2024, 24(17), 5854; https://doi.org/10.3390/s24175854 - 9 Sep 2024
Cited by 2 | Viewed by 2180
Abstract
This paper presents a design, model, and comparative analysis of two internal MEMS vibrating ring gyroscopes for harsh environmental conditions. The proposed design investigates the symmetric structure of the vibrating ring gyroscopes that operate at the identical shape of wine glass mode resonance [...] Read more.
This paper presents a design, model, and comparative analysis of two internal MEMS vibrating ring gyroscopes for harsh environmental conditions. The proposed design investigates the symmetric structure of the vibrating ring gyroscopes that operate at the identical shape of wine glass mode resonance frequencies for both driving and sensing purposes. This approach improves the gyroscope’s sensitivity and precision in rotational motion. The analysis starts with an investigation of the dynamic behaviour of the vibrating ring gyroscope with the detailed derivation of motion equations. The design geometry, meshing technology, and simulation results were comprehensively evaluated on two internal vibrating ring gyroscopes. The two designs are distinguished by their support spring configurations and internal ring structures. Design I consists of eight semicircular support springs and Design II consists of sixteen semicircular support springs. These designs were modelled and analyzed using finite element analysis (FEA) in Ansys 2023 R1 software. This paper further evaluates static and dynamic performance, emphasizing mode matching and temperature stability. The results reveal that Design II, with additional support springs, offers better mode matching, higher resonance frequencies, and better thermal stability compared to Design I. Additionally, electrostatic, modal, and harmonic analyses highlight the gyroscope’s behaviour under varying DC voltages and environmental conditions. Furthermore, this study investigates the impact of temperature fluctuations on performance, demonstrating the robustness of the designs within a temperature range from −100 °C to 100 °C. These research findings suggest that the internal vibrating ring gyroscopes are highly suitable for harsh conditions such as high temperature and space applications. Full article
(This article belongs to the Special Issue Application of MEMS/NEMS-Based Sensing Technology)
Show Figures

Figure 1

19 pages, 3608 KiB  
Article
A Detailed Analysis of the Dynamic Behavior of a MEMS Vibrating Internal Ring Gyroscope
by Waqas Amin Gill, Ian Howard, Ilyas Mazhar and Kristoffer McKee
Micromachines 2024, 15(9), 1107; https://doi.org/10.3390/mi15091107 - 30 Aug 2024
Cited by 2 | Viewed by 1520
Abstract
This paper presents the development of an analytical model of an internal vibrating ring gyroscope in a Microelectromechanical System (MEMS). The internal ring structure consists of eight semicircular beams that are attached to the externally placed anchors. This research work analyzes the vibrating [...] Read more.
This paper presents the development of an analytical model of an internal vibrating ring gyroscope in a Microelectromechanical System (MEMS). The internal ring structure consists of eight semicircular beams that are attached to the externally placed anchors. This research work analyzes the vibrating ring gyroscope’s in-plane displacement behavior and the resulting elliptical vibrational modes. The elliptical vibrational modes appear as pairs with the same resonance frequency due to the symmetric structure of the design. The analysis commences by conceptualizing the ring as a geometric structure with a circular shape possessing specific dimensions such as thickness, height, and radius. We construct a linear model that characterizes the vibrational dynamics of the internal vibrating ring. The analysis develops a comprehensive mathematical formulation for the radial and tangential displacements in local polar coordinates by considering the inextensional displacement of the ring structure. By utilizing the derived motion equations, we highlight the underlying relationships driving the vibrational characteristics of the MEMS’ vibrating ring gyroscope. These dynamic vibrational relationships are essential in enabling the vibrating ring gyroscope’s future utilization in accurate navigation and motion sensing technologies. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators)
Show Figures

Figure 1

6 pages, 1942 KiB  
Proceeding Paper
A Comparative Design Analysis of Internal and External Frame Structures for MEMS Vibrating Ring Gyroscopes
by Waqas Amin Gill, Ian Howard, Ilyas Mazhar and Kristoffer McKee
Eng. Proc. 2023, 58(1), 53; https://doi.org/10.3390/ecsa-10-16182 - 15 Nov 2023
Viewed by 747
Abstract
This research presents a comparative analysis of the two important design methodologies involved in developing microelectromechanical system (MEMS) vibrating ring gyroscopes, namely, internal and external ring gyroscopes. Internal ring gyroscopes are constructed with the outside placement of support pillars connected with the semicircular [...] Read more.
This research presents a comparative analysis of the two important design methodologies involved in developing microelectromechanical system (MEMS) vibrating ring gyroscopes, namely, internal and external ring gyroscopes. Internal ring gyroscopes are constructed with the outside placement of support pillars connected with the semicircular beams that are attached to the vibrating ring structure. The design importance of this particular setting effectively isolates the vibrating ring structure from any external mechanical vibrations, significantly improving the gyroscope’s performance. The internal ring structure provides exceptional precession and reliability, making this design an ideal candidate for harsh conditions, as they can sustain substantial amounts of unwanted and external vibrations without degrading the performance of the gyroscope. On the other hand, external ring gyroscopes include the placement of the support pillars within the vibrating ring structure. This particular design setting is quite convenient in terms of fabrication and provides higher gyroscopic sensitivity. However, this design may lead to coupling of the vibrational modes and potentially compromise the performance of the gyroscope. This research discusses and compares the findings of a modal analysis of the two distinguished design approaches for the MEMS vibrating ring gyroscopes. Full article
Show Figures

Figure 1

8 pages, 2211 KiB  
Proceeding Paper
Simulation-Based Design and Analysis for MEMS Vibrating Ring Gyroscope
by Waqas Amin Gill, Ian Howard, Ilyas Mazhar and Kristoffer McKee
Eng. Proc. 2023, 56(1), 3; https://doi.org/10.3390/ASEC2023-15273 - 26 Oct 2023
Cited by 2 | Viewed by 1122
Abstract
Microelectromechanical system (MEMS) inertial sensors are integral components in a variety of smart electronic devices, most notably MEMS vibrating gyroscopes, which are rotational inertial sensors. The applications of MEMS vibrating gyroscopes range from household appliances to GPS and even to military applications. However, [...] Read more.
Microelectromechanical system (MEMS) inertial sensors are integral components in a variety of smart electronic devices, most notably MEMS vibrating gyroscopes, which are rotational inertial sensors. The applications of MEMS vibrating gyroscopes range from household appliances to GPS and even to military applications. However, the stability and reliability of these MEMS inertial sensors in space applications still pose challenges. In this research study, we introduce a simple design for a vibrating ring gyroscope with eight semicircular support springs connected to outside-placed anchors. The symmetric design structure with semicircular support springs provides higher sensitivity while minimizing mode mismatch. The design and modelling analysis of the vibrating ring gyroscope was conducted using Ansys 2023 R1. The proposed vibrating ring gyroscope has a ring radius of 1000 µm, a 210 µm radius for the semicircular support springs, a ring and support spring thicknesses of 10 µm, and an area of 80 × 80 µm2 for the outside-placed anchors. The vibrating ring gyroscope operates at two identical elliptical-shape resonant modes, one for driving resonance frequency and the other for sensing resonance frequency. Both simulated resonance frequencies were measured at 48.78 kHz and 48.80 kHz. The modelled result achieved a mode mismatch of 0.02 kHz, which can be easily rectified with tuning electrodes. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

28 pages, 9894 KiB  
Article
Design and Considerations: Microelectromechanical System (MEMS) Vibrating Ring Resonator Gyroscopes
by Waqas Amin Gill, Ian Howard, Ilyas Mazhar and Kristoffer McKee
Designs 2023, 7(5), 106; https://doi.org/10.3390/designs7050106 - 11 Sep 2023
Cited by 8 | Viewed by 3500
Abstract
Microelectromechanical system (MEMS) vibrating gyroscope design considerations are always intriguing due to their microscale mechanical, electrical, and material behavior. MEMS vibrating ring gyroscopes have become important inertial sensors in inertial measurement units (IMU) for navigation and sensing applications. The design of a MEMS [...] Read more.
Microelectromechanical system (MEMS) vibrating gyroscope design considerations are always intriguing due to their microscale mechanical, electrical, and material behavior. MEMS vibrating ring gyroscopes have become important inertial sensors in inertial measurement units (IMU) for navigation and sensing applications. The design of a MEMS vibrating ring gyroscope incorporates an oscillating ring structure as a proof mass, reflecting unique design challenges and possibilities. This paper presents a comprehensive design analysis of the MEMS vibrating ring gyroscope from the mechanical, electrical, and damping perspectives. The mechanical design of the MEMS vibrating ring gyroscope investigates the various frame designs of the vibrating ring structure, as well as the various beam structures, including rectangular and semicircular beam structures, which are analyzed using mathematical models and finite element analysis (FEA) simulations that provide an in-depth analysis of the stiffness and deflection of the vibrating structures. The electrical designs of the MEMS vibrating ring gyroscope are analyzed using various electrode configurations, electrostatic actuation, and capacitive detection mechanisms. The design analysis of various forms of damping, including viscous, structural, thermoelastic, and anchor damping, is discussed. The variety of design structures is investigated for MEMS vibrating ring gyroscopes’ mechanical, electrical, and damping performance. Full article
Show Figures

Figure 1

18 pages, 3820 KiB  
Article
Single/Dual/Triple Broadband Metasurface Based Polarisation Converter with High Angular Stability for Terahertz Applications
by Shyam Sundar Pati and Swaroop Sahoo
Micromachines 2022, 13(9), 1547; https://doi.org/10.3390/mi13091547 - 18 Sep 2022
Cited by 10 | Viewed by 2531
Abstract
This paper presents design and characterisation of a new compact metasurface based linear polarisation converter for terahertz applications. The metasurface unit cell with periodicity of 0.292λ0 consists of an asymmetrically oriented planar double semicircular goblet-shaped resonators. It is printed on a [...] Read more.
This paper presents design and characterisation of a new compact metasurface based linear polarisation converter for terahertz applications. The metasurface unit cell with periodicity of 0.292λ0 consists of an asymmetrically oriented planar double semicircular goblet-shaped resonators. It is printed on a polydimethylsiloxane (PDMS) dielectric substrate backed by a gold layer that acts as a ground plane. This metasurface structure exhibits a broadband cross-polarisation conversion in the frequency range of 0.72–0.99 THz with a polarisation conversion ratio (PCR) > 95% and angular stability > 40 for both TE and TM modes. However, the PCR for the single band is >99% at resonant frequencies of 0.755 and 0.94 THz, while the optimised design shows 100% PCR over a BW of 95 GHz. Furthermore, slight modification and optimisation of the broadband design results in quad-ring and slotted DSGRs that produce dual and triple broadband polarisation conversion, respectively. The quad-ring DSGR performs polarisation conversion for frequency range of 0.70–1.08 and 1.61–1.76 THz while the slotted DSGR shows the triple broadband cross-conversion for frequency range of 0.67–0.85, 1.04–1.11, and 1.62–1.76 THz with PCR > 95%. This design is simple, easy to modify to implement single and multi broadband polarisation conversion with high PCR at terahertz regime. In addition to that, it is easy to fabricate and integrate with other components like multiple-input multiple-output terahertz antennas for mutual coupling reduction. Full article
(This article belongs to the Special Issue THz On-Chip Devices and Their Applications)
Show Figures

Figure 1

14 pages, 3260 KiB  
Article
Metasurface of Combined Semicircular Rings with Orthogonal Slit Pairs for Generation of Dual Vector Beams
by Qian Kong, Manna Gu, Xiangyu Zeng, Rui Sun, Yuqin Zhang, Chunxiang Liu, Hong Ma, Weiling Gui and Chuanfu Cheng
Nanomaterials 2021, 11(7), 1718; https://doi.org/10.3390/nano11071718 - 29 Jun 2021
Cited by 4 | Viewed by 2339
Abstract
Manipulation of multichannel vector beams (VBs) with metasurfaces is an important topic and holds potential applications in information technology. In this paper, we propose a novel metasurface for the generation of dual VBs, which is composed of orthogonal slit pairs arranged on multiple [...] Read more.
Manipulation of multichannel vector beams (VBs) with metasurfaces is an important topic and holds potential applications in information technology. In this paper, we propose a novel metasurface for the generation of dual VBs, which is composed of orthogonal slit pairs arranged on multiple groups of combined semicircular rings (CSRs). A group of CSRs include a right-shifted set and a left-shifted set of semicircular rings, and each set of semicircular rings has two halves of circles with different radii, sharing the same shifted center. Under the illumination of linearly polarized light, the two shifted sets of semicircular rings generate the two VBs at the shifted center positions on the observation plane. The slit units of each set are designed with independent rotation order and initial orientation angle. By adjusting the linear polarization of illumination, both two VBs with their orders and polarization states are independently controlled simultaneously. The principle and design are demonstrated by the finite-difference time domain (FDTD) simulation. The work is of significance for miniatured devices of VB generators and for related applications. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

1 pages, 115 KiB  
Abstract
The Internal Cracks’ Influence on The Stress Behavior of Al2O3 Tribo-Mechanical System Under Contact Pressures
by Corina Birleanu, Marius Pustan and Florina Serdean
Eng. Proc. 2021, 4(1), 28; https://doi.org/10.3390/Micromachines2021-09565 - 14 Apr 2021
Viewed by 802
Abstract
Ceramic materials have properties such as: high hardness; high ratio between mechanical resistance/density, wear and corrosion resistance; high stability to the action of corrosive agents; and relatively low price. However, the use of technical ceramics has a rather limited area, determined essentially by [...] Read more.
Ceramic materials have properties such as: high hardness; high ratio between mechanical resistance/density, wear and corrosion resistance; high stability to the action of corrosive agents; and relatively low price. However, the use of technical ceramics has a rather limited area, determined essentially by its tribo-mechanical behavior. The machine parts may fail and not fulfill their functional role due to some limit factors. This paper is based on the behavior of aluminum ceramics in terms of stress and strain in the contact area, and the tribological behavior of these materials. A mathematical concept, including multi-objective optimization based on the cuckoo search algorithm of breaking ceramic materials in which there are defects in the form of internal cracks, has been developed. A defect criterion has been formulated to allow the evaluation of the propagation of the semicircular crack which shapes the places where there are natural defects in the ceramic mass. The model highlighted is the contact between two curved surfaces, specific to the ball–ring contact in the bearings. It has highlighted tensions stress and the stress factors, taking into account the coefficient of conformity and the influence of the friction effects. The experimental study of the mechanical stress state in the contact areas was carried out with the ceramic friction couple ball-bearing ring (Al2O3—99.7% with the addition of SiO2, Fe2O and MgO). A large number of experimental tests were performed. The results of this research work are useful for mechanical designers to identify the crack effect on mechanical parts’ lifetime and to improve reliability. Full article
(This article belongs to the Proceedings of The 1st International Conference on Micromachines and Applications)
21 pages, 8747 KiB  
Article
Study on Friction and Lubrication Characteristics of Surface with Unidirectional Convergence Texture
by Chenchen Li, Xuefeng Yang, Shouren Wang, Yanjun Wang, Chongyang Lu and Jinlong Cao
Coatings 2019, 9(12), 780; https://doi.org/10.3390/coatings9120780 - 21 Nov 2019
Cited by 18 | Viewed by 3193
Abstract
In order to study the influence of texture on the wear and lubrication performance of the surface of the tools, three kinds of textures with unidirectional convergence morphology were processed on the surface of the samples, and each texture was designed with different [...] Read more.
In order to study the influence of texture on the wear and lubrication performance of the surface of the tools, three kinds of textures with unidirectional convergence morphology were processed on the surface of the samples, and each texture was designed with different area occupancy ratios. Simulation analysis shows that, owing to the reflow and convection effect of liquid in the texture, the lubricating film flowing through the textured surface has a high hydrodynamic pressure value, and the semicircular ring texture is the most prominent. By comparing the friction coefficient, when the area occupancy ratio of texture on the surface is 10%, the surface of the samples with different morphology has the lowest coefficient of friction; the friction coefficient of the semicircular ring textured surface is especially very low. Surface textures reduce the direct contact area between the friction pairs, and generate dynamic pressure lubrication and secondary lubrication, so that the surface friction coefficient of the samples is obviously reduced. The surfaces of the non-textured samples have abrasive wear and contact fatigue wear, and the surfaces of the textured samples have adhesive wear, abrasive wear, and cavitation. Full article
Show Figures

Figure 1

13 pages, 3200 KiB  
Article
A Low-Profile Dual-Layer Patch Antenna with a Circular Polarizer Consisting of Dual Semicircular Resonators
by Li Guo, Ming-Chun Tang and Mei Li
Sensors 2018, 18(6), 1773; https://doi.org/10.3390/s18061773 - 1 Jun 2018
Cited by 10 | Viewed by 5004
Abstract
In this paper, a circular polarizer comprising dual semicircular split-rings (DSSRs) is presented. By placing it above an elliptical radiator that radiates linearly polarized (LP) waves, dual-layer patch antennas capable of radiating right-hand (RH) or left-hand (LH) circularly polarized (CP) waves are achieved [...] Read more.
In this paper, a circular polarizer comprising dual semicircular split-rings (DSSRs) is presented. By placing it above an elliptical radiator that radiates linearly polarized (LP) waves, dual-layer patch antennas capable of radiating right-hand (RH) or left-hand (LH) circularly polarized (CP) waves are achieved in terms of the different offset direction of the bottom splits of the DSSRs. Because of both the capacitive coupling to the radiator and the degenerate modes existing in the excited DSSRs, the DSSRs collaboratively result in a circularly polarized radiation, successfully converting incident LP waves into CP ones. Simulated results show that the impedance, axial ratio (AR), and gain frequency response of both proposed CP antennas are identical, with a simulated 3-dB AR bandwidth of 72 MHz covering 2.402–2.474 GHz and a gain enhanced by 3.9 dB. The proposed antennas were fabricated and measured, revealing an operational bandwidth of 65 MHz (2.345–2.41 GHz) and a peak gain up to 9 dBi. Moreover, a low profile of 0.063λ0 is maintained. The proposed CP antennas could be as a candidate for wireless target detection applications in terms of their identical frequency response property. Full article
(This article belongs to the Special Issue Passive Electromagnetic Sensors for Autonomous Wireless Networks)
Show Figures

Figure 1

13 pages, 5504 KiB  
Article
A Compact Multiple Notched Ultra-Wide Band Antenna with an Analysis of the CSRR-TO-CSRR Coupling for Portable UWB Applications
by MuhibUr Rahman, Dong-Sik Ko and Jung-Dong Park
Sensors 2017, 17(10), 2174; https://doi.org/10.3390/s17102174 - 25 Sep 2017
Cited by 56 | Viewed by 7012
Abstract
We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various [...] Read more.
We present a compact ultra-wideband (UWB) antenna integrated with sharp notches with a detailed analysis of the mutual coupling of the multiple notch resonators. By utilizing complementary split ring resonators (CSRR) on the radiating semi-circular patch, we achieve the sharp notch-filtering of various bands within the UWB band without increasing the antenna size. The notched frequency bands include WiMAX, INSAT, and lower and upper WLAN. In order to estimate the frequency shifts of the notch due to the coupling of the nearby CSRRs, an analysis of the coupling among the multiple notch resonators is carried out and we construct the lumped-circuit equivalent model. The time domain analysis of the proposed antenna is performed to show its validity on the UWB application. The measured frequency response of the input port corresponds quite well with the calculations and simulations. The radiation pattern of the implemented quad-notched UWB antenna is nearly omnidirectional in the passband. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

Back to TopTop