Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = semi-resolved CFD-DEM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
4 pages, 175 KB  
Correction
Correction: Wang et al. Calibration of DEM Polyhedron Model for Wheat Seed Based on Angle of Repose Test and Semi-Resolved CFD-DEM Coupling Simulation. Agriculture 2025, 15, 506
by Longbao Wang, Hanyu Yang, Zhinan Wang, Qingjie Wang, Caiyun Lu, Chao Wang and Jin He
Agriculture 2025, 15(14), 1470; https://doi.org/10.3390/agriculture15141470 - 9 Jul 2025
Viewed by 407
Abstract
In the original publication [...] Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
18 pages, 2754 KB  
Article
Numerical Investigation of Tar Formation Mechanisms in Biomass Pyrolysis
by Shuiting Ding, Yifei Wu, Xiaojun Yang and Zongwei Zhang
Aerospace 2025, 12(6), 477; https://doi.org/10.3390/aerospace12060477 - 28 May 2025
Cited by 1 | Viewed by 968
Abstract
This study achieves the particle-resolved modeling of biomass pyrolysis via a novel approach of integrating the Discrete Element Method (DEM) with a semi-detailed chemical kinetic mechanism. By coupling CFD-DEM with a 36-step reaction network, the multiscale interactions between particle-scale hydrodynamics and the formation [...] Read more.
This study achieves the particle-resolved modeling of biomass pyrolysis via a novel approach of integrating the Discrete Element Method (DEM) with a semi-detailed chemical kinetic mechanism. By coupling CFD-DEM with a 36-step reaction network, the multiscale interactions between particle-scale hydrodynamics and the formation kinetics of 19 tar components under varying temperatures (630–770 °C) are elucidated. Levoglucosan (44.79%) and methanol (18.64%) are identified as primary tar components. Combined with these, furfural (C5H4O2, 7.22%), methanal (CH2O, 6.75%), and glutaric acid (C5H8O4, 4.20%) account for over 80% of all the tar components. The secondary decomposition pathways are successfully captured, and changes in the reaction rates, as seen in triglycerides (R23: 307.30% rate increase at 770 °C) and tannins (R24: 265.41% acceleration), are quantified. This work provides the ability to predict intermediate products, offering critical insights into reactor optimization. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 10896 KB  
Article
Calibration of DEM Polyhedron Model for Wheat Seed Based on Angle of Repose Test and Semi-Resolved CFD-DEM Coupling Simulation
by Longbao Wang, Hanyu Yang, Zhinan Wang, Qingjie Wang, Caiyun Lu, Chao Wang and Jin He
Agriculture 2025, 15(5), 506; https://doi.org/10.3390/agriculture15050506 - 26 Feb 2025
Cited by 6 | Viewed by 1296 | Correction
Abstract
The shape of particles is a critical determinant that significantly influences the accuracy of discrete element simulations. To reduce the discrepancies between the discrete element model of wheat seeds and the actual particle shapes, and to enhance the accuracy of Computational Fluid Dynamics-Discrete [...] Read more.
The shape of particles is a critical determinant that significantly influences the accuracy of discrete element simulations. To reduce the discrepancies between the discrete element model of wheat seeds and the actual particle shapes, and to enhance the accuracy of Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) coupling simulations in gas–solid two-phase flow studies, We employed laser scanning and inverse modeling techniques to develop a three-dimensional (3D) reconstruction of the wheat seed. Subsequently, we employed Rocky DEM simulation software to develop a polyhedron model and an Angle of Repose (AOR) test model. The interval range of material parameters was determined through a series of physical experiments and subsequently employed to delineate the high and low levels of parameters for the simulation tests. The simulation parameters were calibrated using data from AOR simulation tests. The Plackett–Burman test, Steepest-Ascent test, and Box–Behnken test were conducted sequentially to determine the optimal parameter configuration. A test bench for wheat gas-assisted seeding was constructed, and a semi-resolved CFD-DEM coupling simulation model was developed to perform comparative analysis. The results demonstrated that the optimal parameters were as follows: the static friction coefficient of wheat seed was 0.15, the dynamic friction coefficient of wheat seed was 0.11694, and the dynamic friction coefficient between wheat seed and resin was 0.0797. In this scenario, the relative error of AOR was 2.3% and the maximum relative error of ejection velocity observed was 4.1%. The reliability of the polyhedron model and its calibration parameters was rigorously validated, thereby providing a robust reference for studies on gas–solid two-phase flows. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop