Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = seed-holding space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2887 KiB  
Article
The Use of Soil Surface Mulching on Melon (Cucumis melo L.) Production under Temperate Climate Conditions
by Katarzyna Adamczewska-Sowińska
Agriculture 2024, 14(8), 1398; https://doi.org/10.3390/agriculture14081398 - 19 Aug 2024
Viewed by 1568
Abstract
Despite its significant thermal requirements, melon is a vegetable species that holds the potential for expanding the crop range in temperate climate regions. The selection of appropriate varieties and agronomic practices facilitates its cultivation in these regions. This experiment, employing a randomized block [...] Read more.
Despite its significant thermal requirements, melon is a vegetable species that holds the potential for expanding the crop range in temperate climate regions. The selection of appropriate varieties and agronomic practices facilitates its cultivation in these regions. This experiment, employing a randomized block design, was conducted from 2019 to 2021, and this study evaluated the response of three melon varieties—‘Seledyn F1’, ‘Melba’, and ‘Malaga F1’ (factor I)—to various mulching materials (factor II): black polyethylene film (PE), black polypropylene nonwoven (PP), biodegradable film (Fbio), and giant miscanthus straw. Control plots were left unmulched. Melon seeds were sown on 15 April, and seedlings were transplanted on 31 May at a spacing of 100 × 80 cm. This study assessed yield, fruit number, individual fruit weight, and vertical and horizontal fruit diameters. Under optimal conditions, the varieties Seledyn F1 and Malaga F1 produced fruits with the highest individual mass. The application of synthetic mulches led to a two-fold increase in fruit yield compared to unmulched plots, with a 23.7% increase in fruit number. On average, the largest fruits were obtained with PE mulch. Melons grown on Fbio mulch yielded, on average, 40% less and produced 18.8% fewer fruits compared to those grown with PE mulch. Full article
Show Figures

Figure 1

23 pages, 4442 KiB  
Article
Seed Trajectory Control and Experimental Validation of the Limited Gear-Shaped Side Space of a High-Speed Cotton Precision Dibbler
by Zibin Mao, Yiquan Cai, Mengyu Guo, Zhen Ma, Luochuan Xu, Junwei Li, Xiangyu Li and Bin Hu
Agriculture 2024, 14(5), 717; https://doi.org/10.3390/agriculture14050717 - 30 Apr 2024
Cited by 7 | Viewed by 1354
Abstract
In this paper, a cotton precision seed-taking dibbler device was designed to address the problems of congestion and leakage of the hole-type dibbler during high-speed operation (more than 4 km/h). Firstly, the motion trajectory of the seed in the limited gear-shaped space was [...] Read more.
In this paper, a cotton precision seed-taking dibbler device was designed to address the problems of congestion and leakage of the hole-type dibbler during high-speed operation (more than 4 km/h). Firstly, the motion trajectory of the seed in the limited gear-shaped space was analyzed and a motion model was established to analyze the relationship between the motion trajectory and seed-filling performance. Secondly, a central combination test with four factors and five levels was implemented using the discrete element software EDEM2018, which simulated the seed-filling performance of the seed-holding space with different structural dimensions. The optimal parameters impacting the seed-filling behavior of the designed dibbler were derived via response surface optimization and multiple regression analyses. Under optimal conditions, three bench tests were repeatedly conducted, and the average qualified index was 93.67%, the leakage index Y3 was 2.67%, and the multiple index Y2 was 3.66%, which was close to the simulation results. Finally, for the speed adaptability test of the seed-holding space with optimal structural parameters, the qualified index was more than 90% when the rotating speed ranged from 1.0 to 2.0 r/s (the speed of the corresponding dibbler was 5.4 km/h to 7.2 km/h), indicating that the dibbler could meet the requirements of high-speed operation and had good speed adaptability. The results can not only provide a reference for the development of precision hole-type dibblers but also have theoretical significance for the quantitative separation of the individual from the population of irregularly rotating agricultural materials and ore materials such as cotton seeds. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 349 KiB  
Article
Primordial Black Holes from Spatially Varying Cosmological Constant Induced by Field Fluctuations in Extra Dimensions
by Arkady A. Popov, Sergey G. Rubin and Alexander S. Sakharov
Universe 2024, 10(4), 166; https://doi.org/10.3390/universe10040166 - 31 Mar 2024
Cited by 1 | Viewed by 1879
Abstract
The origin and evolution of supermassive black holes (SMBHs) in our universe have sparked controversy. In this study, we explore the hypothesis that some of these black holes may have seeded from the direct collapse of dark energy domains with density significantly higher [...] Read more.
The origin and evolution of supermassive black holes (SMBHs) in our universe have sparked controversy. In this study, we explore the hypothesis that some of these black holes may have seeded from the direct collapse of dark energy domains with density significantly higher than the surrounding regions. The mechanism of the origin of such domains relies on the inflationary evolution of a scalar field acting in D dimensions, which is associated with the cosmological constant in our four-dimensional spacetime manifold. Inner space quantum fluctuations of the field during inflation are responsible for the spatial variations of the dark energy density in our space. This finding holds particular significance, especially considering recent evidence from pulsar timing array observations, which supports the existence of a stochastic gravitational wave background consisting of SMBH mergers. Full article
(This article belongs to the Special Issue The Friedmann Cosmology: A Century Later)
Show Figures

Figure 1

20 pages, 27165 KiB  
Article
MES-CTNet: A Novel Capsule Transformer Network Base on a Multi-Domain Feature Map for Electroencephalogram-Based Emotion Recognition
by Yuxiao Du, Han Ding, Min Wu, Feng Chen and Ziman Cai
Brain Sci. 2024, 14(4), 344; https://doi.org/10.3390/brainsci14040344 - 30 Mar 2024
Cited by 5 | Viewed by 2229
Abstract
Emotion recognition using the electroencephalogram (EEG) has garnered significant attention within the realm of human–computer interaction due to the wealth of genuine emotional data stored in EEG signals. However, traditional emotion recognition methods are deficient in mining the connection between multi-domain features and [...] Read more.
Emotion recognition using the electroencephalogram (EEG) has garnered significant attention within the realm of human–computer interaction due to the wealth of genuine emotional data stored in EEG signals. However, traditional emotion recognition methods are deficient in mining the connection between multi-domain features and fitting their advantages. In this paper, we propose a novel capsule Transformer network based on a multi-domain feature for EEG-based emotion recognition, referred to as MES-CTNet. The model’s core consists of a multichannel capsule neural network(CapsNet) embedded with ECA (Efficient Channel Attention) and SE (Squeeze and Excitation) blocks and a Transformer-based temporal coding layer. Firstly, a multi-domain feature map is constructed by combining the space–frequency–time characteristics of the multi-domain features as inputs to the model. Then, the local emotion features are extracted from the multi-domain feature maps by the improved CapsNet. Finally, the Transformer-based temporal coding layer is utilized to globally perceive the emotion feature information of the continuous time slices to obtain a final emotion state. The paper fully experimented on two standard datasets with different emotion labels, the DEAP and SEED datasets. On the DEAP dataset, MES-CTNet achieved an average accuracy of 98.31% in the valence dimension and 98.28% in the arousal dimension; it achieved 94.91% for the cross-session task on the SEED dataset, demonstrating superior performance compared to traditional EEG emotion recognition methods. The MES-CTNet method, utilizing a multi-domain feature map as proposed herein, offers a broader observation perspective for EEG-based emotion recognition. It significantly enhances the classification recognition rate, thereby holding considerable theoretical and practical value in the EEG emotion recognition domain. Full article
Show Figures

Figure 1

16 pages, 6293 KiB  
Article
Ion-Exchanged Clinoptilolite as a Substrate for Space Farming
by Yuri Kalvachev, Ermenegilda Vitale, Carmen Arena, Totka Todorova, Daniel Ilkov and Violeta Velikova
Agriculture 2024, 14(3), 350; https://doi.org/10.3390/agriculture14030350 - 22 Feb 2024
Viewed by 1764
Abstract
Clinoptilolite, with its structural peculiarities (ion-exchange and adsorbent properties), is an excellent candidate for direct use and various modifications. In this study, we explored the effect of ion exchange and the particle size of clinoptilolite on Raphanus sativus seed germination, plant growth, physiological [...] Read more.
Clinoptilolite, with its structural peculiarities (ion-exchange and adsorbent properties), is an excellent candidate for direct use and various modifications. In this study, we explored the effect of ion exchange and the particle size of clinoptilolite on Raphanus sativus seed germination, plant growth, physiological and biochemical characteristics of plants. Plants were grown, for three consecutive runs, on non-modified clinoptilolite, 0.9–2.5 mm (C-2.5) and 2.5–5.0 mm (C-5.0); clinoptilolite fractions modified with ion exchange with ammonium (CNH4-2.5 and CNH4-5.0); and potassium (CK-2.5 and CK-5.0) ions. Our data revealed that ion exchange with ammonium increased water-holding capacity, while potassium exchange decreased the water-holding capacity of the substrates irrespective of their particle size. The positive effect of small fractions ion-exchanged clinoptilolite (CNH4-2.5 and CK-2.5) on seed germination, during the third run, was established. The small clinoptilolite fractions favored root crop production, particularly in CK-2.5 plants only during the first run. Substantial positive effect on the content of total carbohydrates and polyphenols especially during the third run was established in plants grown on potassium-exchanged clinoptilolite. Our findings support the future exploration of clinoptilolite as a suitable substrate for plant growth in space and ground-based facilities for space-oriented experiments. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 3141 KiB  
Article
Zirconia Hybrid Dental Implants Influence the Biological Properties of Neural Crest-Derived Mesenchymal Stromal Cells
by Nadia Tagliaferri, Alessandra Pisciotta, Giulia Orlandi, Giulia Bertani, Rosanna Di Tinco, Laura Bertoni, Paola Sena, Alice Lunghi, Michele Bianchi, Federica Veneri, Pierantonio Bellini, Jessika Bertacchini, Enrico Conserva, Ugo Consolo and Gianluca Carnevale
Nanomaterials 2024, 14(5), 392; https://doi.org/10.3390/nano14050392 - 20 Feb 2024
Cited by 5 | Viewed by 2182
Abstract
Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, [...] Read more.
Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, cellular sensitization and low integration with dental and gingival tissues lead to poor osseointegration, affecting the implant stability in the bone and favoring infections and inflammatory processes in the peri-implant space. These failures pave the way to develop and improve new biocompatible implant materials. CERID dental implants are made of a titanium core embedded in a zirconium dioxide ceramic layer, ensuring absence of corrosion, a higher biological compatibility and a better bone deposition compared to titanium ones. We investigated hDPSCs’ biological behavior, i.e., cell adhesion, proliferation, morphology and osteogenic potential, when seeded on both CERID and titanium implants, before and after cleansing with two different procedures. SEM and AFM analysis of the surfaces showed that while CERID disks were not significantly affected by the cleansing system, titanium ones exhibited well-visible modifications after brush treatment, altering cell morphology. The proliferation rate of DPSCs was increased for titanium, while it remained unaltered for CERID. Both materials hold an intrinsic potential to promote osteogenic commitment of neuro-ectomesenchymal stromal cells. Interestingly, the CERID surface mitigated the immune response by inducing an upregulation of anti-inflammatory cytokine IL-10 on activated PBMCs when a pro-inflammatory microenvironment was established. Our in vitro results pave the way to further investigations aiming to corroborate the potential of CERID implants as suitable biomaterials for dental implant applications. Full article
Show Figures

Figure 1

16 pages, 3635 KiB  
Article
Low-Content Pre-Emulsified Safflower Seed Oil Enhances the Quality and Flavor of the Nemipterus Virgatus Surimi Gel
by Chunyong Song, Yufeng Lin, Pengzhi Hong, Huanming Liu and Chunxia Zhou
Gels 2022, 8(2), 106; https://doi.org/10.3390/gels8020106 - 9 Feb 2022
Cited by 30 | Viewed by 2779
Abstract
Surimi-based products occupy an important position in the aquatic product processing industry. To enhance the quality and flavor of surimi-based products, the effects of pre-emulsified safflower seed oil on the texture, water-holding capacity (WHC), microstructure, and flavor of Nemipterus virgatus surimi gel was [...] Read more.
Surimi-based products occupy an important position in the aquatic product processing industry. To enhance the quality and flavor of surimi-based products, the effects of pre-emulsified safflower seed oil on the texture, water-holding capacity (WHC), microstructure, and flavor of Nemipterus virgatus surimi gel was evaluated. The texture and whiteness of the gel were improved, and the WHC increased (p < 0.05) as the content of safflower seed oil increased up to 2 mL per 100 g surimi. Furthermore, the drops of pre-emulsified safflower seed oils with an average diameter of less than 0.10 μm were evenly distributed in gel matrix. Microstructure and infrared spectroscopy analyses indicated that low-content pre-emulsified safflower seed oil acted as filler particles to occupy void spaces, resulting in gel exhibiting a dense network structure. Volatile analysis showed the gel containing pre-emulsified oil enriched volatile compounds, mainly resulting from the oxidation and decomposition of oils by the activation of lipoxygenase, which synergistically contributes to unique flavors of gel. Consequently, low-content pre-emulsified safflower seed oil can used to enhance the quality and flavor of N. virgatus surimi-based products. These findings are especially relevant to the current growing interest in low-fat and high-protein diets. Full article
Show Figures

Graphical abstract

21 pages, 9138 KiB  
Article
Design and Experiment of the Automatic Laying System for Rice Seedling Tray
by Qiaojun Zhou, Xudong Xia, Jian Wang, Yun Zhou and Jianneng Chen
Agriculture 2021, 11(7), 679; https://doi.org/10.3390/agriculture11070679 - 19 Jul 2021
Cited by 3 | Viewed by 4415
Abstract
In the process of raising rice seedlings, it is necessary to manually place the seedling trays one by one in the seedling field, which is labor intensive and low in efficiency. In order to solve this problem, according to the actual conditions of [...] Read more.
In the process of raising rice seedlings, it is necessary to manually place the seedling trays one by one in the seedling field, which is labor intensive and low in efficiency. In order to solve this problem, according to the actual conditions of the rice seedling field, this paper designs and develops an automatic rice tray laying system, which consists of a gantry truss moving unit, a tray laying trolley unit, a tray laying mechanism unit and a sensor control unit. Through the movement and timing coordination of the cams in the laying mechanism unit, four actions of holding, clamping, laying and restoring are designed to realize the orderly and automatic laying of the stacked seedling trays one by one. In order to meet the agronomic requirements of the horizontal and vertical spacing of seeding trays, especially the efficiency of rice tray laying, the control strategies of the key parts of the system were simulated, selected and optimized. For the longitudinal movement of the gantry truss, the cross-coupling control strategy is adopted to realize the detection and compensation correction of the synchronous position error of the two driving motors. As for the drive motor of the laying trolley and the laying mechanism, the optimized master-slave follow-up control method is adopted to improve the efficiency and accuracy. The results of simulation and field experiment show that when the tray trolley moves on the gantry truss at the speed of 7.5 cm/s, the gantry truss moves at the speed of 35 cm/s in the longitudinal direction, and when the height of the tray laying mechanism is 100 mm from the ground and the motor speed is 375 rpm, the horizontal spacing of the tray can be maintained at 25 ± 5 mm and the vertical spacing at 15 ± 5 mm. The efficiency of tray laying can be increased by 35.7%, up to 380 trays/h, meeting the technical requirements of mechanized field tray laying. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

16 pages, 26893 KiB  
Article
Equipment Development for Small and Urban Conservation Farming Systems
by Ted S. Kornecki and Manuel R. Reyes
Agriculture 2020, 10(12), 595; https://doi.org/10.3390/agriculture10120595 - 2 Dec 2020
Cited by 6 | Viewed by 4815
Abstract
The number of local small farms in the USA is on the rise due to a consumer demand for locally grown produce such as tomatoes. These farms often use small walk-behind tractors, but most field activities are still performed by hand requiring heavy [...] Read more.
The number of local small farms in the USA is on the rise due to a consumer demand for locally grown produce such as tomatoes. These farms often use small walk-behind tractors, but most field activities are still performed by hand requiring heavy physical labor. Recent efforts from USDA have been encouraging producers to adopt no-till techniques using cover crops for benefits such as reduced runoff and soil erosion, increased infiltration and water holding capacity, increased soil organic carbon, decreased soil compaction and improved weed control. However, lack of specialized no-till equipment inhibits widespread adoption of cover crops. To help small farms reduce hand labor and adoption of conservation systems with cover crops, no-till equipment such as a no-till drill, powered roller/crimper, and no-till transplanter have been developed for walk-behind tractors at the National Soil Dynamics Laboratory in Auburn (AL, USA). A replicated three-year field test (2017–2019) was conducted to evaluate effectiveness of the experimental powered coulter drill to plant cereal rye cover crop (Secale cereale, L.), patented powered roller/crimper to terminate rye, and transplanting cash crop tomato (Solanum lycopersicum L.) seedlings with a patented no-till transplanter. These three pieces of equipment were compatible with BCS 853 walk-behind tractor. The experiment was conducted on two different soils: Hiwassee sandy loam soil and Davidson clay to determine the performance of developed machines under different soil types. Results have shown that the powered coulter drill generated effective rye seed emergence (83%) for optimum biomass production. The experimental powered roller/crimper generated 95% rye termination rate three weeks after rolling, and the no-till transplanter performed as anticipated providing less than 10% variation of plant spacing uniformity. Tomato yield varied among years ranging from 15.9 Mg ha−1 to 28.3 Mg ha−1 and was related to different soil and weather conditions at each growing season. Numerically higher tomato yield on Davidson clay might be associated with less insect/pathogen pressure, higher plant available water, and reduced weed pressure due to greater cereal rye biomass production. Results from this experiment indicate that developed experimental equipment can be a practical solution for small no-till farming operations with cover crops. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

21 pages, 1449 KiB  
Article
Impact of Row Spacing, Sowing Density and Nitrogen Fertilization on Yield and Quality Traits of chia (Salvia Hispanica L.) Cultivated in southwestern Germany
by Samantha J. Grimes, Timothy D. Phillips, Filippo Capezzone and Simone Graeff-Hönninger
Agronomy 2019, 9(3), 136; https://doi.org/10.3390/agronomy9030136 - 15 Mar 2019
Cited by 14 | Viewed by 9279
Abstract
To obtain high chia seed yields and seed qualities, a suitable crop management system needs to be developed for the given growing conditions in southwestern Germany. Field experiments were conducted at the experimental station Ihinger Hof in two consecutive years (2016, 2017). The [...] Read more.
To obtain high chia seed yields and seed qualities, a suitable crop management system needs to be developed for the given growing conditions in southwestern Germany. Field experiments were conducted at the experimental station Ihinger Hof in two consecutive years (2016, 2017). The study aimed to evaluate yield and quality traits of chia depending on different (i) row spacing (35, 50 and 75 cm), (ii) sowing densities (1, 1.5 and 2 kg ha−1) and, (iii) N-fertilization rates (0, 20 and 40 kg N ha−1). It consisted of three independent, completely randomized field experiments with three replications. Results showed that chia seed yields ranged from 618.39 to 1171.33 kg ha−1 and that a thousand seed mass of 1.14 to 1.24 g could be obtained. Crude protein-, crude oil- and mucilage contents varied from 18.11–23.91%, 32.16–33.78% and 10.00–13.74%, respectively. Results indicated that the year of cultivation and the accompanied environmental conditions, like precipitation or temperature, influenced the determined traits more than the applied agronomic practices. As average seed yields exceeded those obtained in the countries of origin (Mexico, Guatemala) while having comparable quality characteristics, chia holds great potential as an alternative crop for farmers in southwestern Germany. Full article
Show Figures

Figure 1

14 pages, 1858 KiB  
Article
Secure Speech Content Based on Scrambling and Adaptive Hiding
by Dora M. Ballesteros and Diego Renza
Symmetry 2018, 10(12), 694; https://doi.org/10.3390/sym10120694 - 3 Dec 2018
Cited by 8 | Viewed by 2884
Abstract
This paper presents a method for speech steganography using two levels of security: The first one related to the scrambling process, the second one related to the hiding process. The scrambling block uses a technique based on the ability of adaptation of speech [...] Read more.
This paper presents a method for speech steganography using two levels of security: The first one related to the scrambling process, the second one related to the hiding process. The scrambling block uses a technique based on the ability of adaptation of speech signals to super-Gaussian signals. The security of this block relies on the value of the seed for generating the super-Gaussian signal. Once the speech signal has been scrambled, this is hidden in a non-sensitive speech signal. The hiding process is adaptive and controlled by the value of bits to hold ( B H ). Several tests were performed in order to quantify the influence of B H in the quality of the stego signal and the recovered message. When B H is equal to six, symmetry was found between the modified bits and unchanged bits, and therefore hiding capacity is 50%. In that case, the quality of the stego signal is 99.2% and of the recovered signal is 97.4%. On the other hand, it is concluded that without knowledge of the seed an intruder cannot reverse the scrambling process because all values of the seed are likely. With the above results, it can be affirmed that the proposed algorithm symmetrically considers both the quality of the signal (stego and recovered) as well as the hiding capacity, with a very large value of the key space. Full article
(This article belongs to the Special Issue Emerging Data Hiding Systems in Image Communications)
Show Figures

Figure 1

Back to TopTop