Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = seed-borne viruses

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1995 KiB  
Review
Virus-Induced Genome Editing (VIGE): One Step Away from an Agricultural Revolution
by Elena Mikhaylova
Int. J. Mol. Sci. 2025, 26(10), 4599; https://doi.org/10.3390/ijms26104599 - 11 May 2025
Viewed by 1351
Abstract
There is currently a worldwide trend towards deregulating the use of genome-edited plants. Virus-induced genome editing (VIGE) is a novel technique that utilizes viral vectors to transiently deliver clustered regularly interspaced short palindromic repeat (CRISPR) components into plant cells. It potentially allows us [...] Read more.
There is currently a worldwide trend towards deregulating the use of genome-edited plants. Virus-induced genome editing (VIGE) is a novel technique that utilizes viral vectors to transiently deliver clustered regularly interspaced short palindromic repeat (CRISPR) components into plant cells. It potentially allows us to obtain transgene-free events in any plant species in a single generation without in vitro tissue culture. This technology has great potential for agriculture and is already being applied to more than 14 plant species using more than 20 viruses. The main limitations of VIGE include insufficient vector capacity, unstable expression of CRISPR-associated (Cas) protein, plant immune reaction, host specificity, and reduced viral activity in meristem. Various solutions to these problems have been proposed, such as fusion of mobile elements, RNAi suppressors, novel miniature Cas proteins, and seed-borne viruses, but the final goal has not yet been achieved. In this review, the mechanism underlying the ability of different classes of plant viruses to transiently edit genomes is explained. It not only focuses on the latest achievements in virus-induced editing of crops but also provides suggestions for improving the technology. This review may serve as a source of new ideas for those planning to develop new approaches in VIGE. Full article
(This article belongs to the Special Issue CRISPR-Cas Systems and Genome Editing—2nd Edition)
Show Figures

Figure 1

54 pages, 9812 KiB  
Review
Australian Cool-Season Pulse Seed-Borne Virus Research: 2. Bean Yellow Mosaic Virus
by Roger A. C. Jones
Viruses 2025, 17(5), 668; https://doi.org/10.3390/v17050668 - 3 May 2025
Viewed by 391
Abstract
Here, research on seed-borne virus diseases of cool-season pulses caused by bean yellow mosaic virus (BYMV) in Australia’s grain cropping regions since the 1940s is reviewed. A historical approach is taken towards all past studies involving the main cool-season pulse crops grown, lupin, [...] Read more.
Here, research on seed-borne virus diseases of cool-season pulses caused by bean yellow mosaic virus (BYMV) in Australia’s grain cropping regions since the 1940s is reviewed. A historical approach is taken towards all past studies involving the main cool-season pulse crops grown, lupin, faba bean, field pea, lentil and chickpea, and the minor ones, narbon bean, vetches and Lathyrus species. The main emphasis adopted is on describing what these studies revealed concerning BYMV biology, epidemiology and management. The field and glasshouse experimentation that enabled the development of effective phytosanitary, cultural and host resistance control strategies, supported by many image illustrations from past investigations, is emphasized. This review commences by providing brief background information and describing past studies on BYMV symptom and sequence variants, and alternative BYMV hosts. Next, as the lupin/BYMV pathosystem has been investigated in much greater depth than any other cool season pulse/BYMV pathosystem combination in Australia, what past studies using it have found is covered considerable detail under a series of nine different sub-headings. Finally, what is known about the less thoroughly investigated cool-season pulse/BYMV pathosystems, especially those involving faba bean, field pea and lentil, is reviewed under seven different sub-headings. Recommendations are provided concerning future research priorities. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Graphical abstract

48 pages, 5370 KiB  
Review
Australian Cool-Season Pulse Seed-Borne Virus Research: 1. Alfalfa and Cucumber Mosaic Viruses and Less Important Viruses
by Roger A. C. Jones and Benjamin S. Congdon
Viruses 2024, 16(1), 144; https://doi.org/10.3390/v16010144 - 18 Jan 2024
Cited by 4 | Viewed by 2406
Abstract
Here, we review the research undertaken since the 1950s in Australia’s grain cropping regions on seed-borne virus diseases of cool-season pulses caused by alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). We present brief background information about the continent’s pulse industry, virus [...] Read more.
Here, we review the research undertaken since the 1950s in Australia’s grain cropping regions on seed-borne virus diseases of cool-season pulses caused by alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). We present brief background information about the continent’s pulse industry, virus epidemiology, management principles and future threats to virus disease management. We then take a historical approach towards all past investigations with these two seed-borne pulse viruses in the principal cool-season pulse crops grown: chickpea, faba bean, field pea, lentil, narrow-leafed lupin and white lupin. With each pathosystem, the main focus is on its biology, epidemiology and management, placing particular emphasis on describing field and glasshouse experimentation that enabled the development of effective phytosanitary, cultural and host resistance control strategies. Past Australian cool-season pulse investigations with AMV and CMV in the less commonly grown species (vetches, narbon bean, fenugreek, yellow and pearl lupin, grass pea and other Lathyrus species) and those with the five less important seed-borne pulse viruses also found (broad bean stain virus, broad bean true mosaic virus, broad bean wilt virus, cowpea mild mottle virus and peanut mottle virus) are also summarized. The need for future research is emphasized, and recommendations are made regarding what is required. Full article
(This article belongs to the Special Issue Plant Virus Epidemiology and Control 2023)
Show Figures

Graphical abstract

11 pages, 549 KiB  
Article
Viruses of Apple Are Seedborne but Likely Not Vertically Transmitted
by Anna Wunsch, Bailey Hoff, Mario Miranda Sazo, Janet van Zoeren, Kurt H. Lamour, Oscar P. Hurtado-Gonzales and Marc Fuchs
Viruses 2024, 16(1), 95; https://doi.org/10.3390/v16010095 - 7 Jan 2024
Cited by 6 | Viewed by 2637
Abstract
Many viruses occur in apple (Malus domestica (Borkh.)), but no information is available on their seed transmissibility. Here, we report that six viruses infecting apple trees, namely, apple chlorotic leaf spot virus (ACLSV), apple green crinkle-associated virus (AGCaV), apple rubbery wood virus [...] Read more.
Many viruses occur in apple (Malus domestica (Borkh.)), but no information is available on their seed transmissibility. Here, we report that six viruses infecting apple trees, namely, apple chlorotic leaf spot virus (ACLSV), apple green crinkle-associated virus (AGCaV), apple rubbery wood virus 2 (ARWV2), apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), and citrus concave gum-associated virus (CCGaV) occur in seeds extracted from apple fruits produced by infected maternal trees. Reverse transcription polymerase chain reaction (RT-PCR) and quantitative RT-PCR (RT-qPCR) assays revealed the presence of these six viruses in untreated apple seeds with incidence rates ranging from 20% to 96%. Furthermore, ASPV was detected by RT-PCR in the flesh and peel of fruits produced by infected maternal trees, as well as from seeds extracted from apple fruits sold for fresh consumption. Finally, a large-scale seedling grow-out experiment failed to detect ACLSV, ASGV, or ASPV in over 1000 progeny derived from sodium hypochlorite surface sterilized seeds extracted from fruits produced by infected maternal trees, suggesting no detectable transmission via embryonic tissue. This is the first report on the seedborne nature of apple-infecting viruses. Full article
(This article belongs to the Special Issue Emerging Fruit and Vegetable Viruses 2023)
Show Figures

Figure 1

16 pages, 2575 KiB  
Article
Further Molecular Diagnosis Determines Lack of Evidence for Real Seed Transmission of Tomato Leaf Curl New Delhi Virus in Cucurbits
by Cristina Sáez, Amina Kheireddine, Arcadio García, Alicia Sifres, Alejandro Moreno, María Isabel Font-San-Ambrosio, Belén Picó and Carmelo López
Plants 2023, 12(21), 3773; https://doi.org/10.3390/plants12213773 - 4 Nov 2023
Cited by 2 | Viewed by 2791
Abstract
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control [...] Read more.
Begomoviruses (family Geminiviridae) cause serious diseases in many crop families. Since 2013, the Spanish isolate of tomato leaf curl New Delhi virus (ToLCNDV) has been a limiting factor for cucurbits production in the Mediterranean basin, forcing farmers to adapt new management and control techniques. Although it is well-known that begomoviruses are naturally transmitted by the whitefly Bemisia tabaci, the capacity of these viruses to be vertically transmitted through seeds remains controversial. Clarifying the potential ToLCNDV seed transmission is essential to understand the epidemiology of this threating-for-cucurbits virus and to design appropriate control strategies. We assessed ToLCNDV distribution in the leaves, flowers and seeds of the infected plants of susceptible Cucumis melo accessions and toleration to the infected genotypes of Cucurbita moschata by conventional and quantitative PCR. We analyzed whether the viral particle was transmitted to offspring. We also evaluated ToLCNDV presence in commercial seeds of cucurbits (zucchini (Cucurbita pepo), melon (C. melo), cucumber (Cucumis sativus) and watermelon (Citrullus lanatus)) and in their progenies. As the assayed seedlings remained symptomless, we increased the reliability and accuracy of detection in these samples by searching for replicative forms of ToLCNDV by combining Southern blot hybridization and rolling-circle amplification (RCA). However, integral genomic DNA was not identified in the plants of offspring. Although the seedborne nature of ToLCNDV was confirmed, our results do not support the transmission of this virus from contaminated seeds to progeny. Full article
Show Figures

Figure 1

16 pages, 2890 KiB  
Article
Seed Transmission of Begomoviruses: A Potential Threat for Bitter Gourd Cultivation
by Ravisankar Gomathi Devi, Chinnaraj Jothika, Arjunan Sankari, Sethuraman Lakshmi, Varagur Ganesan Malathi and Perumal Renukadevi
Plants 2023, 12(6), 1396; https://doi.org/10.3390/plants12061396 - 21 Mar 2023
Cited by 10 | Viewed by 4197
Abstract
Bitter gourd (Momordica charantia L.), one of the valued vegetable crops in India, is severely affected by yellow mosaic disease caused by two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV). The symptoms are yellowing, [...] Read more.
Bitter gourd (Momordica charantia L.), one of the valued vegetable crops in India, is severely affected by yellow mosaic disease caused by two begomoviruses, tomato leaf curl New Delhi virus (ToLCNDV) and bitter gourd yellow mosaic virus (BgYMV). The symptoms are yellowing, distortion of leaf, puckering, and malformed fruits. Increased incidence of the disease and appearance of symptoms even in young emerging seedling stage were suggestive of seed transmission of the viruses, which was examined in detail. To study the seed transmission, two sources—seeds of elite hybrids H1, H2, H3, H4, and Co1 procured from a seed market; and seeds from infected plants in the farmer’s field were tested. Detection of the virus by DAS-ELISA using polyclonal antibody indicated embryo infection up to 63%, 26%, 20%, and 10% in hybrids H1, H2, H3, and H4, respectively, for market-procured seeds. In PCR analysis with primers specific for ToLCNDV and BgYMV, infection by ToLCNDV was as high as 76% and mixed infection was 24%. In contrast, in seeds derived from field-infected plants, the percentage detection was less. Grow-out tests with market-procured seeds revealed no transmission for BgYMV compared with 5% transmission for ToLCNDV. Whether seed-borne inocula could serve as an inoculum for new infection in a field and further progress of the disease was investigated in a microplot study. The study clearly revealed variation in seed transmission between different sources, lots, cultivars, and viruses. The virus present in symptomatic and asymptomatic plants was easily transmitted by whitefly. In another microplot experiment, the potential of seed-borne virus as inoculum was proved. There was 43.3% initial seed transmission in the microplot, increasing to 70% after release of 60 whiteflies. Full article
(This article belongs to the Topic Plant Virus)
Show Figures

Figure 1

14 pages, 1257 KiB  
Article
Rapid Quantification of Infectious Cucumber green mottle mosaic virus in Watermelon Tissues by PMA Coupled with RT-qPCR
by Ali Chai, Quancheng Wang, Huajun Kang, Leiyan Yan, Yunping Huang, Yanxia Shi, Xuewen Xie, Lei Li, Tengfei Fan, Yuhong Wang and Baoju Li
Viruses 2022, 14(9), 2046; https://doi.org/10.3390/v14092046 - 15 Sep 2022
Cited by 5 | Viewed by 2817
Abstract
Cucumber green mottle mosaic virus (CGMMV) belongs to the Tobamovirus genus and is an important quarantine virus of cucurbit crops. Seedborne transmission is one of the principal modes for CGMMV spread, and effective early detection is helpful to prevent the occurrence of the [...] Read more.
Cucumber green mottle mosaic virus (CGMMV) belongs to the Tobamovirus genus and is an important quarantine virus of cucurbit crops. Seedborne transmission is one of the principal modes for CGMMV spread, and effective early detection is helpful to prevent the occurrence of the disease. Quantitative real-time reverse-transcription PCR (RT-qPCR) is a sensitive and rapid method for detecting CGMMV nucleic acids, but it cannot distinguish between infectious and noninfectious viruses. In the present work, a propidium monoazide (PMA) assisted RT-qPCR method (PMA-RT-qPCR) was developed to rapidly distinguish infectious and inactive CGMMV. PMA is a photoactive dye that can selectively react with viral RNA released or inside inactive CGMMV virions but not viral RNA inside active virions. The formation of PMA-RNA conjugates prevents PCR amplification, leaving only infectious virions to be amplified. The primer pair cp3-1F/cp3-1R was designed based on the coat protein (cp) gene for specific amplification of CGMMV RNA by RT-qPCR. The detection limit of the RT-qPCR assay was 1.57 × 102 copies·μL−1. PMA at 120 μmol·L−1 was suitable for the selective quantification of infectious CGMMV virions. Under optimal conditions, RT-qPCR detection of heat-inactivated CGMMV resulted in Ct value differences larger than 16 between PMA-treated and non-PMA-treated groups, while Ct differences less than 0.23 were observed in the detection of infectious CGMMV. For naturally contaminated watermelon leaf, fruit and seedlot samples, infectious CGMMV were quantified in 13 out of the 22 samples, with infestation levels of 102~105 copies·g−1. Application of this assay enabled the selective detection of infectious CGMMV and facilitated the monitoring of the viral pathogen in watermelon seeds and tissues, which could be useful for avoiding the potential risks of primary inoculum sources. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

18 pages, 25956 KiB  
Article
Integrating High throughput Sequencing into Survey Design Reveals Turnip Yellows Virus and Soybean Dwarf Virus in Pea (Pisum Sativum) in the United Kingdom
by Aimee R. Fowkes, Sam McGreig, Hollie Pufal, Shona Duffy, Becky Howard, Ian P. Adams, Roy Macarthur, Rebecca Weekes and Adrian Fox
Viruses 2021, 13(12), 2530; https://doi.org/10.3390/v13122530 - 16 Dec 2021
Cited by 35 | Viewed by 5640
Abstract
There is only limited knowledge of the presence and incidence of viruses in peas within the United Kingdom, therefore high-throughput sequencing (HTS) in combination with a bulk sampling strategy and targeted testing was used to determine the virome in cultivated pea crops. Bulks [...] Read more.
There is only limited knowledge of the presence and incidence of viruses in peas within the United Kingdom, therefore high-throughput sequencing (HTS) in combination with a bulk sampling strategy and targeted testing was used to determine the virome in cultivated pea crops. Bulks of 120 leaves collected from twenty fields from around the UK were initially tested by HTS, and presence and incidence of virus was then determined using specific real-time reverse-transcription PCR assays by testing smaller mixed-bulk size samples. This study presents the first finding of turnip yellows virus (TuYV) in peas in the UK and the first finding of soybean dwarf virus (SbDV) in the UK. While TuYV was not previously known to be present in UK peas, it was found in 13 of the 20 sites tested and was present at incidences up to 100%. Pea enation mosaic virus-1, pea enation mosaic virus-2, pea seed-borne mosaic virus, bean yellow mosaic virus, pea enation mosaic virus satellite RNA and turnip yellows virus associated RNA were also identified by HTS. Additionally, a subset of bulked samples were re-sequenced at greater depth to ascertain whether the relatively low depth of sequencing had missed any infections. In each case the same viruses were identified as had been identified using the lower sequencing depth. Sequencing of an isolate of pea seed-borne mosaic virus from 2007 also revealed the presence of TuYV and SbDV, showing that both viruses have been present in the UK for at least a decade, and represents the earliest whole genome of SbDV from Europe. This study demonstrates the potential of HTS to be used as a surveillance tool, or for crop-specific field survey, using a bulk sampling strategy combined with HTS and targeted diagnostics to indicate both presence and incidence of viruses in a crop. Full article
(This article belongs to the Special Issue Plant Virus Surveillance and Metagenomics)
Show Figures

Figure 1

18 pages, 3669 KiB  
Article
Polycistronic Artificial microRNA-Mediated Resistance to Cucumber Green Mottle Mosaic Virus in Cucumber
by Shuo Miao, Chaoqiong Liang, Jianqiang Li, Barbara Baker and Laixin Luo
Int. J. Mol. Sci. 2021, 22(22), 12237; https://doi.org/10.3390/ijms222212237 - 12 Nov 2021
Cited by 16 | Viewed by 3498
Abstract
Cucumber green mottle mosaic virus (CGMMV), as a typical seed-borne virus, causes costly and devastating diseases in the vegetable trade worldwide. Genetic sources for resistance to CGMMV in cucurbits are limited, and environmentally safe approaches for curbing the accumulation and spread of seed-transmitted [...] Read more.
Cucumber green mottle mosaic virus (CGMMV), as a typical seed-borne virus, causes costly and devastating diseases in the vegetable trade worldwide. Genetic sources for resistance to CGMMV in cucurbits are limited, and environmentally safe approaches for curbing the accumulation and spread of seed-transmitted viruses and cultivating completely resistant plants are needed. Here, we describe the design and application of RNA interference-based technologies, containing artificial microRNA (amiRNA) and synthetic trans-acting small interfering RNA (syn-tasiRNA), against conserved regions of different strains of the CGMMV genome. We used a rapid transient sensor system to identify effective anti-CGMMV amiRNAs. A virus seed transmission assay was developed, showing that the externally added polycistronic amiRNA and syn-tasiRNA can successfully block the accumulation of CGMMV in cucumber, but different virulent strains exhibited distinct influences on the expression of amiRNA due to the activity of the RNA-silencing suppressor. We also established stable transgenic cucumber plants expressing polycistronic amiRNA, which conferred disease resistance against CGMMV, and no sequence mutation was observed in CGMMV. This study demonstrates that RNA interference-based technologies can effectively prevent the occurrence and accumulation of CGMMV. The results provide a basis to establish and fine-tune approaches to prevent and treat seed-based transmission viral infections. Full article
(This article belongs to the Special Issue Plant Non-coding RNAs)
Show Figures

Figure 1

18 pages, 2007 KiB  
Article
Diversity and Distribution of Viruses Infecting Wild and Domesticated Phaseolus spp. in the Mesoamerican Center of Domestication
by Elizabeth Chiquito-Almanza, Juan Caballero-Pérez, Jorge A. Acosta-Gallegos, Victor Montero-Tavera, Luis Antonio Mariscal-Amaro and José Luis Anaya-López
Viruses 2021, 13(6), 1153; https://doi.org/10.3390/v13061153 - 16 Jun 2021
Cited by 11 | Viewed by 3095
Abstract
Viruses are an important disease source for beans. In order to evaluate the impact of virus disease on Phaseolus biodiversity, we determined the identity and distribution of viruses infecting wild and domesticated Phaseolus spp. in the Mesoamerican Center of Domestication (MCD) and the [...] Read more.
Viruses are an important disease source for beans. In order to evaluate the impact of virus disease on Phaseolus biodiversity, we determined the identity and distribution of viruses infecting wild and domesticated Phaseolus spp. in the Mesoamerican Center of Domestication (MCD) and the western state of Nayarit, Mexico. We used small RNA sequencing and assembly to identify complete or near-complete sequences of forty-seven genomes belonging to nine viral species of five genera, as well as partial sequences of two putative new endornaviruses and five badnavirus- and pararetrovirus-like sequences. The prevalence of viruses in domesticated beans was significantly higher than in wild beans (97% vs. 19%; p < 0.001), and all samples from domesticated beans were positive for at least one virus species. In contrast, no viruses were detected in 80–83% of the samples from wild beans. The Bean common mosaic virus and Bean common mosaic necrosis virus were the most prevalent viruses in wild and domesticated beans. Nevertheless, Cowpea mild mottle virus, transmitted by the whitefly Bemisia tabaci, has the potential to emerge as an important pathogen because it is both seed-borne and a non-persistently transmitted virus. Our results provide insights into the distribution of viruses in cultivated and wild Phaseolus spp. and will be useful for the identification of emerging viruses and the development of strategies for bean viral disease management in a center of diversity. Full article
(This article belongs to the Special Issue Plant Virus Surveillance and Metagenomics)
Show Figures

Figure 1

15 pages, 886 KiB  
Article
Targeted Genome Sequencing (TG-Seq) Approaches to Detect Plant Viruses
by Solomon Maina, Linda Zheng and Brendan C. Rodoni
Viruses 2021, 13(4), 583; https://doi.org/10.3390/v13040583 - 30 Mar 2021
Cited by 18 | Viewed by 4449
Abstract
Globally, high-throughput sequencing (HTS) has been used for virus detection in germplasm certification programs. However, sequencing costs have impeded its implementation as a routine diagnostic certification tool. In this study, the targeted genome sequencing (TG-Seq) approach was developed to simultaneously detect multiple (four) [...] Read more.
Globally, high-throughput sequencing (HTS) has been used for virus detection in germplasm certification programs. However, sequencing costs have impeded its implementation as a routine diagnostic certification tool. In this study, the targeted genome sequencing (TG-Seq) approach was developed to simultaneously detect multiple (four) viral species of; Pea early browning virus (PEBV), Cucumber mosaic virus (CMV), Bean yellow mosaic virus (BYMV) and Pea seedborne mosaic virus (PSbMV). TG-Seq detected all the expected viral amplicons within multiplex PCR (mPCR) reactions. In contrast, the expected PCR amplicons were not detected by gel electrophoresis (GE). For example, for CMV, GE only detected RNA1 and RNA2 while TG-Seq detected all the three RNA components of CMV. In an mPCR to amplify all four viruses, TG-Seq readily detected each virus with more than 732,277 sequence reads mapping to each amplicon. In addition, TG-Seq also detected all four amplicons within a 10−8 serial dilution that were not detectable by GE. Our current findings reveal that the TG-Seq approach offers significant potential and is a highly sensitive targeted approach for detecting multiple plant viruses within a given biological sample. This is the first study describing direct HTS of plant virus mPCR products. These findings have major implications for grain germplasm healthy certification programs and biosecurity management in relation to pathogen entry into Australia and elsewhere. Full article
(This article belongs to the Special Issue Genomics in Plant Viral Research)
Show Figures

Figure 1

30 pages, 7780 KiB  
Review
The Potyviruses: An Evolutionary Synthesis Is Emerging
by Adrian J. Gibbs, Mohammad Hajizadeh, Kazusato Ohshima and Roger A.C. Jones
Viruses 2020, 12(2), 132; https://doi.org/10.3390/v12020132 - 22 Jan 2020
Cited by 88 | Viewed by 8634
Abstract
In this review, encouraged by the dictum of Theodosius Dobzhansky that “Nothing in biology makes sense except in the light of evolution”, we outline the likely evolutionary pathways that have resulted in the observed similarities and differences of the extant molecules, biology, distribution, [...] Read more.
In this review, encouraged by the dictum of Theodosius Dobzhansky that “Nothing in biology makes sense except in the light of evolution”, we outline the likely evolutionary pathways that have resulted in the observed similarities and differences of the extant molecules, biology, distribution, etc. of the potyvirids and, especially, its largest genus, the potyviruses. The potyvirids are a family of plant-infecting RNA-genome viruses. They had a single polyphyletic origin, and all share at least three of their genes (i.e., the helicase region of their CI protein, the RdRp region of their NIb protein and their coat protein) with other viruses which are otherwise unrelated. Potyvirids fall into 11 genera of which the potyviruses, the largest, include more than 150 distinct viruses found worldwide. The first potyvirus probably originated 15,000–30,000 years ago, in a Eurasian grass host, by acquiring crucial changes to its coat protein and HC-Pro protein, which enabled it to be transmitted by migrating host-seeking aphids. All potyviruses are aphid-borne and, in nature, infect discreet sets of monocotyledonous or eudicotyledonous angiosperms. All potyvirus genomes are under negative selection; the HC-Pro, CP, Nia, and NIb genes are most strongly selected, and the PIPO gene least, but there are overriding virus specific differences; for example, all turnip mosaic virus genes are more strongly conserved than those of potato virus Y. Estimates of dN/dS (ω) indicate whether potyvirus populations have been evolving as one or more subpopulations and could be used to help define species boundaries. Recombinants are common in many potyvirus populations (20%–64% in five examined), but recombination seems to be an uncommon speciation mechanism as, of 149 distinct potyviruses, only two were clear recombinants. Human activities, especially trade and farming, have fostered and spread both potyviruses and their aphid vectors throughout the world, especially over the past five centuries. The world distribution of potyviruses, especially those found on islands, indicates that potyviruses may be more frequently or effectively transmitted by seed than experimental tests suggest. Only two meta-genomic potyviruses have been recorded from animal samples, and both are probably contaminants. Full article
(This article belongs to the Special Issue The Complexity of the Potyviral Interaction Network)
Show Figures

Figure 1

Back to TopTop