Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = secrecy capacity maximization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 883 KB  
Article
Energy-Efficient and Secure Double RIS-Aided Wireless Sensor Networks: A QoS-Aware Fuzzy Deep Reinforcement Learning Approach
by Sarvenaz Sadat Khatami, Mehrdad Shoeibi, Reza Salehi and Masoud Kaveh
J. Sens. Actuator Netw. 2025, 14(1), 18; https://doi.org/10.3390/jsan14010018 - 10 Feb 2025
Cited by 17 | Viewed by 2221
Abstract
Wireless sensor networks (WSNs) are a cornerstone of modern Internet of Things (IoT) infrastructure, enabling seamless data collection and communication for many IoT applications. However, the deployment of WSNs in remote or inaccessible locations poses significant challenges in terms of energy efficiency and [...] Read more.
Wireless sensor networks (WSNs) are a cornerstone of modern Internet of Things (IoT) infrastructure, enabling seamless data collection and communication for many IoT applications. However, the deployment of WSNs in remote or inaccessible locations poses significant challenges in terms of energy efficiency and secure communication. Sensor nodes, with their limited battery capacities, require innovative strategies to minimize energy consumption while maintaining robust network performance. Additionally, ensuring secure data transmission is critical for safeguarding the integrity and confidentiality of IoT systems. Despite various advancements, existing methods often fail to strike an optimal balance between energy efficiency and quality of service (QoS), either depleting limited energy resources or compromising network performance. This paper introduces a novel framework that integrates double reconfigurable intelligent surfaces (RISs) into WSNs to enhance energy efficiency while ensuring secure communication. To jointly optimize both RIS phase shift matrices, we employ a fuzzy deep reinforcement learning (FDRL) framework that integrates reinforcement learning (RL) with fuzzy logic and long short-term memory (LSTM)-based architecture. The RL component learns optimal actions by iteratively interacting with the environment and updating Q-values based on a reward function that prioritizes both energy efficiency and secure communication. The LSTM captures temporal dependencies in the system state, allowing the model to make more informed predictions about future network conditions, while the fuzzy logic layer manages uncertainties by using optimized membership functions and rule-based inference. To explore the search space efficiently and identify optimal parameter configurations, we use the advantage of the multi-objective artificial bee colony (MOABC) algorithm as an optimization strategy to fine-tune the hyperparameters of the FDRL framework while simultaneously optimizing the membership functions of the fuzzy logic system to improve decision-making accuracy under uncertain conditions. The MOABC algorithm enhances convergence speed and ensures the adaptability of the proposed framework in dynamically changing environments. This framework dynamically adjusts the RIS phase shift matrices, ensuring robust adaptability under varying environmental conditions and maximizing energy efficiency and secure data throughput. Simulation results validate the effectiveness of the proposed FDRL-based double RIS framework under different system configurations, demonstrating significant improvements in energy efficiency and secrecy rate compared to existing methods. Specifically, quantitative analysis demonstrates that the FDRL framework improves energy efficiency by 35.4%, the secrecy rate by 29.7%, and RSMA by 27.5%, compared to the second-best approach. Additionally, the model achieves an R² score improvement of 12.3%, confirming its superior predictive accuracy. Full article
Show Figures

Figure 1

23 pages, 535 KB  
Article
Resource Allocation for Secure MIMO-SWIPT Systems in the Presence of Multi-Antenna Eavesdropper in Vehicular Networks
by Vieeralingaam Ganapathy, Ramanathan Ramachandran and Tomoaki Ohtsuki
Sensors 2023, 23(19), 8069; https://doi.org/10.3390/s23198069 - 25 Sep 2023
Cited by 2 | Viewed by 1719
Abstract
In this paper, we optimize the secrecy capacity of the legitimate user under resource allocation and security constraints for a multi-antenna environment for the simultaneous transmission of wireless information and power in a dynamic downlink scenario. We study the relationship between secrecy capacity [...] Read more.
In this paper, we optimize the secrecy capacity of the legitimate user under resource allocation and security constraints for a multi-antenna environment for the simultaneous transmission of wireless information and power in a dynamic downlink scenario. We study the relationship between secrecy capacity and harvested energy in a power-splitting configuration for a nonlinear energy-harvesting model under co-located conditions. The capacity maximization problem is formulated for the vehicle-to-vehicle communication scenario. The formulated problem is non-convex NP-hard, so we reformulate it into a convex form using a divide-and-conquer approach. We obtain the optimal transmit power matrix and power-splitting ratio values that guarantee positive values of the secrecy capacity. We analyze different vehicle-to-vehicle communication settings to validate the differentiation of the proposed algorithm in maintaining both reliability and security. We also substantiate the effectiveness of the proposed approach by analyzing the trade-offs between secrecy capacity and harvested energy. Full article
(This article belongs to the Special Issue RF Energy Harvesting and Wireless Power Transfer for IoT)
Show Figures

Figure 1

25 pages, 2273 KB  
Article
Secrecy Capacity Enhancement in Active IRS-Assisted UAV Communication System
by Jiansong Miao, Tongjie Li, Shanling Bai, Shi Yan and Yan Zhao
Sensors 2023, 23(9), 4377; https://doi.org/10.3390/s23094377 - 28 Apr 2023
Cited by 3 | Viewed by 2424
Abstract
As a new technology for reconstructing communication environments, intelligent reflecting surfaces (IRSs) can be applied to UAV communication systems. However, some challenges exist in IRS-assisted UAV communication system design, such as physical layer security issues, IRS design, and power consumption issues owing to [...] Read more.
As a new technology for reconstructing communication environments, intelligent reflecting surfaces (IRSs) can be applied to UAV communication systems. However, some challenges exist in IRS-assisted UAV communication system design, such as physical layer security issues, IRS design, and power consumption issues owing to the limitation of the hardware. Therefore, a secrecy capacity optimization scheme for an active IRS-assisted unmanned aerial vehicle (UAV) communication system is proposed to solve multi-user security issues. In particular, controllable power amplifiers are integrated into reflecting units to solve the problem of blocked links, and the UAV can dynamically select the served user according to the channel quality. In order to maximize the system average achievable secrecy capacity and ensure the power constraints of the UAV and active IRS, user scheduling, UAV trajectory, beamforming vector, and reflection matrix are jointly optimized, and the block coordinate descent (BCD) algorithm is applied to solve this non-convex problem. Simulation results show that the active IRS-assisted UAV communication scheme can significantly weaken the “multiplicative fading” effect and enhance the system secrecy capacity by 55.4% and 11.9% compared with the schemes with passive IRS and without optimal trajectory, respectively. Full article
(This article belongs to the Special Issue 6G Wireless Communication and Its Applications)
Show Figures

Figure 1

28 pages, 1050 KB  
Article
Physical Layer Security in Two-Way SWIPT Relay Networks with Imperfect CSI and a Friendly Jammer
by Maymoona Hayajneh and Thomas Aaron Gulliver
Entropy 2023, 25(1), 122; https://doi.org/10.3390/e25010122 - 6 Jan 2023
Cited by 4 | Viewed by 2666
Abstract
In this paper, the security of two-way relay communications in the presence of a passive eavesdropper is investigated. Two users communicate via a relay that depends solely on energy harvesting to amplify and forward the received signals. Time switching is employed at the [...] Read more.
In this paper, the security of two-way relay communications in the presence of a passive eavesdropper is investigated. Two users communicate via a relay that depends solely on energy harvesting to amplify and forward the received signals. Time switching is employed at the relay to harvest energy and obtain user information. A friendly jammer is utilized to hinder the eavesdropping from wiretapping the information signal. The eavesdropper employs maximal ratio combining and selection combining to improve the signal-to-noise ratio of the wiretapped signals. Geometric programming (GP) is used to maximize the secrecy capacity of the system by jointly optimizing the time switching ratio of the relay and transmit power of the two users and jammer. The impact of imperfect channel state information at the eavesdropper for the links between the eavesdropper and the other nodes is determined. Further, the secrecy capacity when the jamming signal is not perfectly cancelled at the relay is examined. The secrecy capacity is shown to be greater with a jammer compared to the case without a jammer. The effect of the relay, jammer, and eavesdropper locations on the secrecy capacity is also studied. It is shown that the secrecy capacity is greatest when the relay is at the midpoint between the users. The closer the jammer is to the eavesdropper, the higher the secrecy capacity as the shorter distance decreases the signal-to-noise ratio of the jammer. Full article
(This article belongs to the Collection Feature Papers in Information Theory)
Show Figures

Figure 1

24 pages, 845 KB  
Article
Physical-Layer Security for UAV-Assisted Air-to-Underwater Communication Systems with Fixed-Gain Amplify-and-Forward Relaying
by Yi Lou, Ruofan Sun, Julian Cheng, Gang Qiao and Jinlong Wang
Drones 2022, 6(11), 341; https://doi.org/10.3390/drones6110341 - 3 Nov 2022
Cited by 10 | Viewed by 3075
Abstract
We analyze a secure unmanned aerial vehicle-assisted two-hop mixed radio frequency (RF) and underwater wireless optical communication (UWOC) system using a fixed-gain amplify-and-forward (AF) relay. The UWOC channel was modeled using a mixture exponential-generalized Gamma distribution to consider the combined effects of air [...] Read more.
We analyze a secure unmanned aerial vehicle-assisted two-hop mixed radio frequency (RF) and underwater wireless optical communication (UWOC) system using a fixed-gain amplify-and-forward (AF) relay. The UWOC channel was modeled using a mixture exponential-generalized Gamma distribution to consider the combined effects of air bubbles and temperature gradients on transmission characteristics. Both legitimate and eavesdropping RF channels were modeled using flexible α-μ distributions. Specifically, we first derived both the probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio of the system. Based on the PDF and CDF expressions, we derived the closed-form expressions for the tight lower bound of the secrecy outage probability (SOP) and the probability of non-zero secrecy capacity (PNZ), which are both expressed in terms bivariate Fox’s H-function. To utilize these analytical expressions, we derived asymptotic expressions of SOP and PNZ using only well-known functions. We also used asymptotic expressions to determine the suboptimal transmitting power to maximize energy efficiency. Furthermore, we investigated the effect of levels of air bubbles and temperature gradients in the UWOC channel, and studied the nonlinear characteristics of the transmission medium and the number of multipath clusters of the RF channel on the secrecy performance. Finally, all analyses were validated using a simulation. Full article
(This article belongs to the Special Issue UAV-Assisted Intelligent Vehicular Networks)
Show Figures

Figure 1

15 pages, 938 KB  
Article
Secrecy Capacity Maximization of UAV-Enabled Relaying Systems with 3D Trajectory Design and Resource Allocation
by Qi An, Yu Pan, Huizhu Han and Hang Hu
Sensors 2022, 22(12), 4519; https://doi.org/10.3390/s22124519 - 15 Jun 2022
Cited by 10 | Viewed by 2489
Abstract
Unmanned aerial vehicles (UAVs) have attracted considerable attention, thanks to their high flexibility, on-demand deployment and the freedom in trajectory design. The communication channel quality can be effectively improved by using UAV to build a line-of-sight communication link between the transmitter and the [...] Read more.
Unmanned aerial vehicles (UAVs) have attracted considerable attention, thanks to their high flexibility, on-demand deployment and the freedom in trajectory design. The communication channel quality can be effectively improved by using UAV to build a line-of-sight communication link between the transmitter and the receiver. Furthermore, there is increasing demand for communication security improvement, as the openness of a wireless channel brings serious threat. This paper formulates a secrecy capacity optimization problem of a UAV-enabled relay communication system in the presence of malicious eavesdroppers, in which the secrecy capacity is maximized by jointly optimizing the UAV relay’s location, power allocation, and bandwidth allocation under the communication quality and information causality constraints. A successive convex approximation–alternative iterative optimization (SCA-AIO) algorithm is proposed to solve this highly coupled nonconvex problem. Simulation results demonstrate the superiority of the proposed secrecy transmission strategy with optimal trajectory design and resource allocation compared with the benchmark schemes and reveal the impacts of communication resources on system performance. Full article
(This article belongs to the Special Issue Integration of Satellite-Aerial-Terrestrial Networks)
Show Figures

Figure 1

19 pages, 2848 KB  
Article
Interference Management with Reflective In-Band Full-Duplex NOMA for Secure 6G Wireless Communication Systems
by Rabia Khan, Nyasha Tsiga and Rameez Asif
Sensors 2022, 22(7), 2508; https://doi.org/10.3390/s22072508 - 25 Mar 2022
Cited by 14 | Viewed by 3529
Abstract
The electromagnetic spectrum is used as a medium for modern wireless communication. Most of the spectrum is being utilized by the existing communication system. For technological breakthroughs and fulfilling the demands of better utilization of such natural resources, a novel Reflective In-Band Full-Duplex [...] Read more.
The electromagnetic spectrum is used as a medium for modern wireless communication. Most of the spectrum is being utilized by the existing communication system. For technological breakthroughs and fulfilling the demands of better utilization of such natural resources, a novel Reflective In-Band Full-Duplex (R-IBFD) cooperative communication scheme is proposed in this article that involves Full-Duplex (FD) and Non-Orthogonal Multiple Access (NOMA) technologies. The proposed R-IBFD provides efficient use of spectrum with better system parameters including Secrecy Outage Probability (SOP), throughput, data rate and secrecy capacity to fulfil the requirements of a smart city for 6th Generation (6thG or 6G). The proposed system targets the requirement of new algorithms that contribute towards better change and bring the technological revolution in the requirements of 6G. In this article, the proposed R-IBFD mainly contributes towards co-channel interference and security problem. The In-Band Full-Duplex mode devices face higher co-channel interference in between their own transmission and receiving antenna. R-IBFD minimizes the effect of such interference and assists in the security of a required wireless communication system. For a better understanding of the system contribution, the improvement of secrecy capacity and interference with R-IBFD is discussed with the help of SOP derivation, equations and simulation results. A machine learning genetic algorithm is one of the optimization tools which is being used to maximize the secrecy capacity. Full article
(This article belongs to the Topic Wireless Communications and Edge Computing in 6G)
Show Figures

Figure 1

22 pages, 1487 KB  
Article
Design of Relay Switching to Combat an Eavesdropper in IoT-NOMA Wireless Networks
by Thanh-Nam Tran, Van-Cuu Ho, Thoai Phu Vo, Khanh Ngo Nhu Tran and Miroslav Voznak
Future Internet 2022, 14(3), 71; https://doi.org/10.3390/fi14030071 - 24 Feb 2022
Cited by 2 | Viewed by 3168
Abstract
The requirements of low latency, low cost, less energy consumption, high flexibility, high network capacity, and high data safety are crucial challenges for future Internet of Things (IoT) wireless networks. Motivated by these challenges, this study deals with a novel design of green-cooperative [...] Read more.
The requirements of low latency, low cost, less energy consumption, high flexibility, high network capacity, and high data safety are crucial challenges for future Internet of Things (IoT) wireless networks. Motivated by these challenges, this study deals with a novel design of green-cooperative IoT network, which employed coupled relays consisting of one IoT relay selected for forwarding signals to multiple IoT devices while another IoT relay transmitted jamming signals to an eavesdropper. For flexibility, all IoT nodes were powered by solar energy enough to sustain themselves, in order to consume less energy. To reach low latency, the study adopted the emerging non-orthogonal multiple access technique to serve multiple IoT devices simultaneously. Furthermore, the study adopted the simultaneous wireless information and power transfer technique which transmits wireless data for information processing and energy for energy harvesting. The study sketched a novel transmission block time period framework which plotted how a signal could travel via an individual IoT model. Maximizing the achievable bit-rate of IoT devices was considered to improve network capacity and data safety as well. Aiming at enhancing secrecy performance, a rest IoT relay played a role as a friendly jammer to transmit a jamming signal to an eavesdropper using energy harvested from the power splitting protocol. The results achieved in this study showed that the proposed model satisfied the requirements of future green IoT wireless networks. Derivatives leading to closed-form expressions are presented and verified by simulation results. The investigated results demonstrated that a friendly jammer based on radio frequency and energy harvesting strongly forces the intercept probability performance of the eavesdropper towards one, while outage probability performance of IoT devices towards zero showed that the signal to noise ratio tends to infinity. Full article
(This article belongs to the Special Issue 6G Wireless Channel Measurements and Models: Trends and Challenges)
Show Figures

Figure 1

21 pages, 975 KB  
Article
AN-Aided Secure Beamforming in Power-Splitting-Enabled SWIPT MIMO Heterogeneous Wireless Sensor Networks
by Weili Ge, Zhengyu Zhu, Wanming Hao, Yi Wang, Zhongyong Wang, Qiong Wu and Zheng Chu
Electronics 2019, 8(4), 459; https://doi.org/10.3390/electronics8040459 - 25 Apr 2019
Cited by 4 | Viewed by 3606
Abstract
In this paper, we investigate the physical layer security in a two-tier heterogeneous wireless sensor network (HWSN) depending on simultaneous wireless information and power transfer (SWIPT) approach for multiuser multiple-input multiple-output wiretap channels with artificial noise (AN) transmission, where a more general system [...] Read more.
In this paper, we investigate the physical layer security in a two-tier heterogeneous wireless sensor network (HWSN) depending on simultaneous wireless information and power transfer (SWIPT) approach for multiuser multiple-input multiple-output wiretap channels with artificial noise (AN) transmission, where a more general system framework of HWSN only includes a macrocell and a femtocell. For the sake of implementing security enhancement and green communications, the joint optimization problem of the secure beamforming vector at the macrocell and femtocell, the AN vector, and the power splitting ratio is modeled to maximize the minimal secrecy capacity of the wiretapped macrocell sensor nodes (M-SNs) while considering the fairness among multiple M-SNs. To reduce the performance loss of the rank relaxation from the SDR technique while solving the non-convex max–min program, we apply successive convex approximation (SCA) technique, first-order Taylor series expansion and sequential parametric convex approximation (SPCA) approach to transform the max–min program to a second order cone programming (SOCP) problem to iterate to a near-optimal solution. In addition, we propose a novel SCA-SPCA-based iterative algorithm while its convergence property is proved. The simulation shows that our SCA-SPCA-based method outperforms the conventional methods. Full article
Show Figures

Figure 1

16 pages, 2062 KB  
Article
A Coalitional Formation Game for Physical Layer Security of Cooperative Compressive Sensing Multi-Relay Networks
by Jialun Li, Shuai Chang, Xiaomei Fu, Liang Zhang, Yishan Su and Zhigang Jin
Sensors 2018, 18(9), 2942; https://doi.org/10.3390/s18092942 - 4 Sep 2018
Cited by 2 | Viewed by 2738
Abstract
Cooperative relaying is an effective technology to improve the capacity of physical-layer security, in which the relay helps forward the received signal to the destination. In this paper, a cooperative compressive sensing and amplify-and-forward (CCS-AF) scheme, which combines the compressive sensing theory and [...] Read more.
Cooperative relaying is an effective technology to improve the capacity of physical-layer security, in which the relay helps forward the received signal to the destination. In this paper, a cooperative compressive sensing and amplify-and-forward (CCS-AF) scheme, which combines the compressive sensing theory and amplify-and-forward strategy, is proposed to increase the secrecy capacity. To optimize the secrecy performance, a coalition formation algorithm based on coalitional game theory of optimal relay selection is proposed to maximize the secrecy capacity. Different to maximizing the individual utility based on the traditional pareto order, the max-coalition order rule is newly defined to guide the coalitional formation. Simulation results indicate that with the proposed algorithm, part of the relays could form a coalition to forward the information and the proposed algorithm could significantly improve the secrecy capacity of cooperative multi-relay networks. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

19 pages, 365 KB  
Article
Performance Analysis of Physical Layer Security of Opportunistic Scheduling in Multiuser Multirelay Cooperative Networks
by Kyusung Shim, Nhu Tri Do and Beongku An
Sensors 2017, 17(2), 377; https://doi.org/10.3390/s17020377 - 15 Feb 2017
Cited by 17 | Viewed by 5048
Abstract
In this paper, we study the physical layer security (PLS) of opportunistic scheduling for uplink scenarios of multiuser multirelay cooperative networks. To this end, we propose a low-complexity, yet comparable secrecy performance source relay selection scheme, called the proposed source relay selection (PSRS) [...] Read more.
In this paper, we study the physical layer security (PLS) of opportunistic scheduling for uplink scenarios of multiuser multirelay cooperative networks. To this end, we propose a low-complexity, yet comparable secrecy performance source relay selection scheme, called the proposed source relay selection (PSRS) scheme. Specifically, the PSRS scheme first selects the least vulnerable source and then selects the relay that maximizes the system secrecy capacity for the given selected source. Additionally, the maximal ratio combining (MRC) technique and the selection combining (SC) technique are considered at the eavesdropper, respectively. Investigating the system performance in terms of secrecy outage probability (SOP), closed-form expressions of the SOP are derived. The developed analysis is corroborated through Monte Carlo simulation. Numerical results show that the PSRS scheme significantly improves the secure ability of the system compared to that of the random source relay selection scheme, but does not outperform the optimal joint source relay selection (OJSRS) scheme. However, the PSRS scheme drastically reduces the required amount of channel state information (CSI) estimations compared to that required by the OJSRS scheme, specially in dense cooperative networks. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop